matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikExtrema Verteilungsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Extrema Verteilungsfunktion
Extrema Verteilungsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrema Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Fr 02.07.2010
Autor: matheja

Aufgabe
Moin moin,

ich wollte euch mal fragen ob ich die folgende Aufgabe richtig gerechnet habe:

Seien X1,..,Xn stochastisch unabhängige stetige R-wertige Zufalls-
variablen, die alle die gleiche Verteilung haben. Bestimmen Sie die Verteilungsfunktionen des Maximums und des Minimums der X, i = 1,.., n in Abhängigkeit von der Verteilungsfunktion der Xi, i = 1,2,..,n. (Hinweis: Überlegen Sie, wann das Maximum von n Zahlen nicht größer als eine gegebene Zahl ist. Gehen Sie beim Minimum analog vor.)
Welche Dichtefunktion hat das Maximum von n stochastisch unabhängigen exponentialverteilten Zufallsvariablen mit gleichem Parameter ? (Hinweis: Stellen Sie eine Beziehung zwischen Dichte und Verteilungsfunktion her.)


1.Maximum:
P(max Xi<= [mm] x)=P(X_i<=x [/mm] für alle i)=P(X1<=x),.., P(Xn<=x)= Fx1(x),..., Fxn(x)
1<=i<=n
2.Minimum:
P(min Xi<= x)= [mm] 1-P(X_i<=x [/mm] für alle i)=1-P(X1>x),.., 1-P(Xn>x)= 1-(1-Fx1(x)),..., (1-Fxn(x)))

3.
Dichtefunktion der exponentialverteilung:

[mm] f(x)=\lambda*e^{-\lamda*x} [/mm] x>=0 und sonst 0

Verteilungsfunktion:

[mm] F(x)=\integral_{a}^{b}{f(x) dx}=1-e^{-\lamda*x} [/mm] für x>=0 sonst 0

Gefragt war ja:
Welche Dichtefunktion hat das Maximum von n stochastisch unabhängigen exponentialverteilten Zufallsvariablen mit gleichem Parameter?

doch leider hilft mir auch der hinweis nicht :(

ist 1 und 2 richtig?
bzw könnt ihr mir bei 3 helfen


LG

matheja


        
Bezug
Extrema Verteilungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Fr 02.07.2010
Autor: gfm


> Moin moin,
>  
> ich wollte euch mal fragen ob ich die folgende Aufgabe
> richtig gerechnet habe:
>  Seien X1,..,Xn stochastisch unabhängige stetige R-wertige
> Zufalls-
>  variablen, die alle die gleiche Verteilung haben.

Da sie alle die gleiche Verteiluing haben gilt [mm] P(\{X_i\le t\})=F(t). [/mm] Da sie stetig sein sollen gilt, dass F(t)  f.ü. differenzierbar, so daß für

[mm] f(t)=\begin{cases} F'(t),&\mbox{für }F\mbox{ diff'bar bei } t\\0, &\mbox{sonst}\end{cases} [/mm]

[mm] F(t)-F(a)=\integral_a^t f(u)d\lambda(u) [/mm] gilt.

Das f.ü (fast überall) soll heißen, dass die Dichte u.U. auf einer Menge vom Lebesgue-Maß null nicht aus der Verteilung gewonnen werden kann (was z.B. der Fall ist wenn Knicke vorliegen), was aber nicht weiter schlimm ist.

Wegen der Unabhängigkeit gilt auch noch [mm] P(\cap_{i=1}^n\{X_i\le t_i\})=\produkt_{i=1}^n P(\{X_i\le t_i\})=\produkt_{i=1}^n F(t_i). [/mm]

> Bestimmen Sie die Verteilungsfunktionen des Maximums und
> des Minimums der X, i = 1,.., n in Abhängigkeit von der
> Verteilungsfunktion der Xi, i = 1,2,..,n. (Hinweis:
> Überlegen Sie, wann das Maximum von n Zahlen nicht
> größer als eine gegebene Zahl ist. Gehen Sie beim Minimum
> analog vor.)

Sei also [mm] M:=\max(X_1,...,X_n). [/mm] Dann ist

[mm] P(\{M\le t\})=P(\{\max(X_1,...,X_n)\le t\})=P(\{\wedge_{i=1}^n (X_i\le t)\}) [/mm]
[mm] =P(\cap_{i=1}^n \{X_i\le t\})=\produkt_{i=1}^n F(t)=F(t)^n [/mm]

Sei [mm] m:=\min(X_1,...,X_n)=-\max(-X_1,...,-X_n). [/mm] Dann ist

[mm] P(\{m\le t\})=P(\{-\max(-X_1,...,-X_n)\le t\})=P(\{\max(-X_1,...,-X_n)\ge -t\}) [/mm]

[mm] =1-P(\{\max(-X_1,...,-X_n)<-t\})=1-P(\{\wedge_{i=1}^n (-X_i<-t)\})=1-P(\{\wedge_{i=1}^n (X_i>t)\}) [/mm]

[mm] =1-P(\cap_{i=1}^n \{X_i>t\})=1-\produkt_{i=1}^n P(\{X_i>t\})=1-\produkt_{i=1}^n (1-P(\{X_i\le t\}))=1-(1-F(t))^n [/mm]

>  Welche Dichtefunktion hat das Maximum von n stochastisch
> unabhängigen exponentialverteilten Zufallsvariablen mit
> gleichem Parameter ? (Hinweis: Stellen Sie eine Beziehung
> zwischen Dichte und Verteilungsfunktion her.)

Die Verteilungsfunktion [mm] F_{X,\lambda}(t) [/mm] einer exponential verteilten Zufallsvariable X lautet [mm] F_{X,\lambda}(t)=(1-e^{-\lambda t})*1_{[0,\infty)}(t). [/mm] Gemäß dem obigen Ergebnis hat das Maximum M n solcher identisch und unabhängig verteilen Zufallsvariablen die Verteilung

[mm] F_{M,\lambda}(t)=((1-e^{-\lambda t})*1_{[0,\infty)}(t))^n=(1-e^{-\lambda t})^n*1_{[0,\infty)}(t) [/mm]

Die Dichte erhält man durch Ableiten:

[mm] f_{M,\lambda}(t)=n\lambda e^{-\lambda t}(1-e^{-\lambda t})^{n-1}*1_{[0,\infty)}(t) [/mm]

LG

gfm

Bezug
                
Bezug
Extrema Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 02.07.2010
Autor: matheja

Vielen lieben Dank :)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]