Extremstellen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:14 Mo 10.12.2007 | Autor: | Queeeni |
Ich hab eine Frage und zwar habe ich gerade gelernt, wie man Extremstellen berechnet (also f'(x) = 0) das ist auch gar kein problem...
nur jetzt soll ich bestimmen, ob es sich um einen globalen oder lokalen Extrempunkt handelt.
Das Buch sagt:"Eine Extremstelle von f ist dann vorhanden, wenn es eine Umgebung U ( [mm] x_{0} [/mm] ) gibt, so dass für alle Werte x aus U ( [mm] x_{0} [/mm] ) [mm] \cap [/mm] I gilt. Ein lokales Maximum ist dabei: f(x) [mm] \le [/mm] f( [mm] x_{0} [/mm] ). ein lokales Minimum ist dabei: f(x) [mm] \ge [/mm] f( [mm] x_{0} [/mm] )."
Das ist ja auch alles schön und gut, aber ich verstehe [mm] x_{0} [/mm] nicht wirklich... ist das ein reeller Punkt oder lass ich einfach [mm] x_{0} [/mm] stehen... und wie kann ich f(x) mit diesem Punkt vergleichen (das muss ich doch machen, um festzustellen,ob es größer oder kleiner ist, oder nicht) ???
Ich weiß dass man auch einfach f''(x) = 0 setzen könnte... aber das sollen wir nicht machen, sondern die oben beschriebene Art anwenden...
wäre dankbar für hilfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:27 Mo 10.12.2007 | Autor: | Kroni |
Hi,
versuche ich es mal anders zu formulieren.
Eine Extremstelle liegt genau dann vor, wenn f'(x)=0 (das ist nur notwendige Bedingung) und ein Vorzeichenwechsel deiner Steigung vorliegt...Sonst könnte ja z.B. auch eine Sattelstelle Extremstelle sein...aber das habt ihr bestimmt auch so in der Schule definiert.
Okay, jeder Extrempunkt ist sicher ein lokaler Extrempunkt. Lokal bedeutet, dass er in seiner näheren Umgebung keinen Extrempunkt mehr hat... Stell dir einen Graphen vor, der ein paar Extrempunkte hat. Wenn ich dann nur in der Umgebung (d.h. an der Stelle [mm] x_0, [/mm] wo die Extremstelle liegt und dann noch ein paar millimeter links und rechts...) gucke, ist der Extrempunkt der einzige.
Okay, warum aber fragt man nach globalen Extrema?
Zunächst bedeutet global, dass man sich die komplette Kurve anguckt.
Nun, es kann vorkommen, dass du mehrere Extrema hast. Dann kann es ja sein, dass der eine Extrempunkt, nehmen wir mal einen Hochpunkt höher liegt, als der Hochpunkt nebenan. Dann kann ja der "tiefer" liegende Hochpunkt nicht der globale Hochpunkt sein, da, wenn man den ganzen Graphen betrachtet, es immer noch den einen Hochpunkt gibt, der höher liegt.
Okay, nun kann es aber doch auch sein, dass der Hochpunkt genau die höchste Stelle, die dein Graph je erreicht, markiert. Dann nennt man ihn globaler Hochpunkt. Analog gehts mit den Tiefpunkten.
Es kann aber auch sein, dass dein Hochpunkt der höchste Hochpunkt ist, den dein Graph hat, aber dein Graph insgesamt ins Unendliche "abhaut". Dann ist dein Hochpunkt global gesehen nicht mehr ein globaler Hochpunkt, da er immer von den y-Werten her übertroffen wird. Dann ist es halt "nur" ein lokaler Hochpunkt.
Verstehst du jetzt den Unterschied zwischen lokal und Global?
Lokal: Man guckt nur in der näheren Umgebung deines Extrema, und Global: Man guckt sich den ganzen Graphen an,und guckt,ob das dann eben der höchste oder tiefste Punkt für alle x-Werte ist.
LG
Kroni
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:20 Di 11.12.2007 | Autor: | Queeeni |
Gut danke erstmal.. den untershcied hab ich verstanden. Was aber ist jetzt dieser ganze kram mit [mm] x_{0} [/mm] ???
Das macht für mich keinen sinn... ich ahbe eine notwendige bedingung, mit der ich die wendestellen berechnen kann und überprüfe sie mit der zweiten ableitung... aber warum dann [mm] x_{0} [/mm] ???
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:24 Di 11.12.2007 | Autor: | M.Rex |
Hallo
Das [mm] x_{0} [/mm] soll nur signalisieren, dass es sich hier um einen konkreten Wert handelt, den du zur Probe in die 2.te Ableitung einsetzt.
(und zwar die Nullstellen der ersten Ableitung)
Marius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:36 So 16.12.2007 | Autor: | Queeeni |
gut vielen dank..
LG Queeeni
|
|
|
|