matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteExtremstellen durch Eigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Eigenwerte" - Extremstellen durch Eigenwerte
Extremstellen durch Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremstellen durch Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 So 20.11.2005
Autor: stevarino

Hallo

Hab hier folgendes
[mm] f(x,y)=3x^{2}-2xy+y^{2} x^{2}+y^{2}<1 [/mm]

In meine Mathebuch wird das mit Multiplikatorregel gelöst
L(x,y, [mm] \lambda)=3x^{2}-2xy+y^{2}+\lambda(x^{2}+y^{2}-1) [/mm]
[mm] L_{x}=6x-2y +2\lambdax=0 [/mm]
[mm] L_{y}=-2x +2y+2\lambday=0 [/mm]
[mm] L_{\lambda}=6x-2y +2\lambdax=0 [/mm]

Jetzt stehen nur mehr die Eigenwerte hier und mein Problem dabei ist wie sieht die Matrix aus von der ich die Eigenwerte berechnen soll hab auch probiert das irgendwie umzuformen aber ich komm dabei nicht weiter

[mm] \pmat{ 2*(3+\lambda) & -2 \\ -2 & 2*(1+\lambda )}???????? [/mm]

Danke
lg Stevo





        
Bezug
Extremstellen durch Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Mo 21.11.2005
Autor: Toellner

Hallo Stevo,

weil die Aufgabe überfällig ist, ein paar Gedanken dazu:

> Hab hier folgendes
>  [mm]f(x,y)=3x^{2}-2xy+y^{2} x^{2}+y^{2}<1[/mm]

Was soll das heißen? Wenn Du eine Antwort willst, musst Du Dir mal den Text angucken, wie er dargestellt wird!
[mm]f(x,y)=3x^{2}-2xy+y^{2}[/mm]= max! mit Nebenbedingung [mm]g(x,y) = x^{2}+y^{2}<1[/mm]

> In meine Mathebuch wird das mit Multiplikatorregel gelöst
>  [mm]L(x,y,\lambda)=3x^{2}-2xy+y^{2}-\lambda(x^{2}+y^{2}-1)[/mm]

Normalerweise wird der Multiplikator negativ genommen (siehe unten):
Der Gradient von f muss senkrecht auf der "Höhenlinie" g(x,y)=1 sein, sonst gäbe es eine weitere Aufstiegsrichtung parallel zur Höhenlinie, also [mm] \nabla(f-\lambda [/mm] g)(x,y) = [mm] \vec{0}: [/mm]
[mm]L(x,y,\lambda)=3x^{2}-2xy+y^{2}-\lambda(x^{2}+y^{2}-1)[/mm]

>  [mm]L_{x}=6x-2y -2\lambda x=0[/mm]
>  [mm]L_{y}=-2x +2y-2\lambda y=0[/mm]

außerdem hast Du x²+y²=1, also 3 Gleichungen mit 3 Unbekannten...
Wenn Du das Problem mit Eigenwerten lösen sollst, musst Du Dir klarmachen, dass [mm]f(x,y) = (x,y) \pmat{ 3 & -2 \\ 0 & 1 } \vektor{x \\ y}[/mm] ist, also [mm]\nabla f(x,y) = (\pmat{ 3 & -2 \\ 0 & 1 }+\pmat{ 3 & -2 \\ 0 & 1 }^{t})\vektor{x \\ y} =: A\vektor{x \\ y}[/mm]   und [mm]\nabla g(x) = 2\vektor{x \\ y}[/mm] und damit wird die obige Bedingung mit [mm]A = [mm] \pmat{ 6 & -2 \\ -2 & 2 } [/mm]
[mm]\nabla(f-\lambda g)(x,y) = (A\vektor{x \\ y} - 2\lambda \vektor{x \\ y}) = \vec{0}[/mm]
also ein klassisches Eigenwertproblem.
Das geht aber nur in diesem simplen Fall,

Gruß, Richard


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]