Extremum überlagert Wendepunkt < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:20 So 11.06.2006 | Autor: | Phoney |
Hallo,
meine Frage ist denkbar einfach, nachdem ich von Flachpunkten gehört habe, frage ich mich ebenfalls, ob es Funktionen gibt, wo es einen Punkt gibt, an dem ein Extremum UND Wendepunkt vorhanden ist. Das klingt unwahrscheinllich, aber ich möchte das noch einmal bestätigt haben, dass es so etwas nicht gibt.
Gruß Phoney
|
|
|
|
Hi, Phoney,
> meine Frage ist denkbar einfach, nachdem ich von
> Flachpunkten gehört habe, frage ich mich ebenfalls, ob es
> Funktionen gibt, wo es einen Punkt gibt, an dem ein
> Extremum UND Wendepunkt vorhanden ist. Das klingt
> unwahrscheinllich, aber ich möchte das noch einmal
> bestätigt haben, dass es so etwas nicht gibt.
Deine Frage ist gar nicht so einfach, sondern ausgesprochen intelligent!
Es hängt nämlich sogar von der Definition des Begriffes "Wendepunkt" ab, ob z.B. ein Tiefpunkt auch ein Wendepunkt sein kann!
Nach der bei uns (Gymnasium Bayern) gültigen Definition (laut Formelsammlung des Bayr, Schulbuchverlags S.64) gilt:
"x{o} [mm] \in D_{f} [/mm] heißt Wendestelle von f (bzw. [mm] G_{f}), [/mm] wenn [mm] x_{o} [/mm] eine eigentliche Extremalstelle von f' ist (...)".
So: Und nun zu Deiner Frage. Nimm an, eine Funktion hat einen Tiefpunkt, bei dem sich gleichzeitig DIE KRÜMMUNG ÄNDERT.
Dann kann dies logischerweise nur eine "Knickstelle" sein, also z.B. bei folgender Funktion:
[mm] f(x)=\begin{cases} x^{2}, & \mbox{für } x \le 0 \\ -(x-1)^{2}+1, & \mbox{für } x > 0 \end{cases}
[/mm]
Wenn Du den Graphen zeichnest, siehst Du sofort: Die hat in T(0;0) einen Tiefpunkt. Und: Bei x=0 ändert sich die Krümmung von Links- in Rechtskrümmung.
Würde man nun sagen: Dort, wo sich die Krümmung ändert, liegt ein Wendepunkt vor, hättest Du hier einen Tiefpunkt, der gleichzeitig Wendepunkt ist. (Ich habe diese "Definition" auch schon mal gelesen!)
Aber noch UNSERER Definition (siehe oben) reicht das eben nicht! Die 1. Ableitung muss einen Extrempunkt aufweisen!
Betrachten wir also die 1. Ableitung:
f'(x) = [mm] \begin{cases} 2x, & \mbox{für } x < 0 \\ -2x+2, & \mbox{für } x > 0 \end{cases}
[/mm]
Wenn Du den zugehörigen Graphen zeichnest, erkennst Du:
Die hat bei x=0 keinen Extrempunkt, ist dort nicht mal definiert, da der Graph einen "Sprung" macht (von y=0 zu y=2). Also: Kein Wendepunkt!
Langer Rede kurzer Sinn:
NACH DER BEI UNS GÜLTIGEN DEFINITION KANN EIN EXTREMPUNKT [mm] \red{KEIN} [/mm] WENDEPUNKT SEIN!
Nun ist nur noch die Frage, ob Ihr ebenfalls diese Definition benutzt!
(Andererseits werden die Aufgaben zur Kurvendiskussion wohl immer so gestellt sein, dass das Problem nicht auftritt! Ist nämlich - wie Du gesehen hast - schon ein bissl kompliziert!)
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:01 Mo 12.06.2006 | Autor: | Phoney |
Hallo Zwerglein.
> Deine Frage ist gar nicht so einfach, sondern ausgesprochen
> intelligent!
Nett von dir, danke!
>
> NACH DER BEI UNS GÜLTIGEN DEFINITION KANN EIN EXTREMPUNKT
> [mm]\red{KEIN}[/mm] WENDEPUNKT SEIN!
>
> Nun ist nur noch die Frage, ob Ihr ebenfalls diese
> Definition benutzt!
Diese Definition benutzen wir auch. Vielen Dank für diese klasse Erklärung!
Gruß
Phoney
|
|
|
|