matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisExtremwert Probleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Extremwert Probleme
Extremwert Probleme < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Probleme: Hilfe
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 15.12.2004
Autor: kannnichtalles

Welches rechtwinklige Dreieck mit der Hypotenuse 6 cm erzeugt bei Rotation um eine Kathete den Rotationskörper größten Volumens? Ich weiss, dass der Körper der durch diese Rotation raus kommt ein Kegel ist und dessen Volumen Berechnung wie folgt ist: 1/3 x b² x pi x a!
Nur jetzt weiss ich nicht wie der Flächeninhalt eines Kegels berechnet wird, und wie ich die übrigen 2 punkte berechnen soll?
Bitte um Hilfe, meine erste Frage ist nicht so wichtig, die ist mir wichtiger
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwert Probleme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 Mi 15.12.2004
Autor: Fugre


> Welches rechtwinklige Dreieck mit der Hypotenuse 6 cm
> erzeugt bei Rotation um eine Kathete den Rotationskörper
> größten Volumens? Ich weiss, dass der Körper der durch
> diese Rotation raus kommt ein Kegel ist und dessen Volumen
> Berechnung wie folgt ist: 1/3 x b² x pi x a!
>  Nur jetzt weiss ich nicht wie der Flächeninhalt eines
> Kegels berechnet wird, und wie ich die übrigen 2 punkte
> berechnen soll?
> Bitte um Hilfe, meine erste Frage ist nicht so wichtig, die
> ist mir wichtiger
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo kannnichtalles,

bei solchen Aufgaben ist es am sinnvollsten, wenn du zunächst eine Skizze anfertigst.
Das habe ich jetzt mal gemacht, das Dreieck liegt, wie du siehst, im Koordinatenkreuz.

[Dateianhang nicht öffentlich]

Die Hypotenuse ist heißt c und die Seite an Kathete an der gespiegelt wird nennen wir a und diese liegt auf der x Achse.
Die Seite c entspricht ja einem Abschnitt des Graphen der Ursprungsgeraden $f(x)=mx$ mit einer Länge von 6.
Wir können also schon einmal das Bekannte notieren:
(1) $f(x)=mx$
(2) $V= [mm] \integral_{0}^{x_0} {f(x)^2 dx} [/mm] $ bzw [mm] $V=\bruch{1}{3} [/mm] Ah$

Nun sollten wir uns das Integral einmal anschauen. Die Funktion (des Dreiecks) lautet $y=mx$ .
Und wir sollten uns überlegen welche Grenzen das Intervall hat. Die untere Grenze ist mit 0 leicht zu finden, bei der oberen
werden wir auch schnell feststellen können, dass sie [mm] $x_0$ [/mm] ist, diese Angabe können wir mit dem Satz des Pythagoras aber
noch etwas ergiebiger gestalten.
[mm] $x_0^2+y_0^2=36 \rightarrow x_0=\wurzel{36-y_0^2}$ [/mm]

Wir müssen jetzt versuchen, dass m zu ersetzen.
Bedenken können wir ja [mm] $m=\bruch{y_0}{x_0}$ [/mm]
und mit dem S.d.P. können wir schreiben [mm] $y_0=\wurzel{36-x_0^2}$ [/mm]
[mm] $\rightarrow m=\bruch{\wurzel{36-x_0^2}{x_0^2}}$ [/mm]
und das wiederum können wir in die Funktionsvorschrift einsetzen
[mm] $f(x)=mx=\bruch{\wurzel{36-x^2}{x^2}}x=\bruch{\wurzel{36-x^2}{x}} [/mm]

Nun haben wir auch schon alle Informationen, die wir brauchen, wir kennen die Funktion und haben genaue Angbane über das
Integral.
[mm] $V=\pi \integral_{0}^{x_0} {f(x)^2 dx}$ [/mm]
Und nun guckst du nach Extrempunkten.

Ich hoffe, dass ich dir helfen konnte und keinen Fehler machte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Extremwert Probleme: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 15.12.2004
Autor: kannnichtalles

Zunächst möchte ich mich für die Bemühungen bedanken, die du für mich auchgebracht hast.
Nur was jetzt meine frage ist, woher nimmst plötzlich die 36 her?

Bezug
                        
Bezug
Extremwert Probleme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:16 Mi 15.12.2004
Autor: Fabian

Hallo kannnichtalles

Die 36 hat Fugre über den Pythagoras ermittelt.

Wie aus der Zeichnung hervorgeht , ist c = 6 die Hypothenuse des Dreiecks. Also folgt aus Pythagoras [mm] 6^{2}=a^{2}+b^{2} [/mm]

Alles klar?

Gruß Fabian

Bezug
        
Bezug
Extremwert Probleme: schönere Lösung
Status: (Antwort) fertig Status 
Datum: 14:58 Do 16.12.2004
Autor: Fugre

Hallo Kannnichtalles,

es gibt noch eine viel einfachere und schönere Lösungsmöglichkeit.
Wir betrachten diesmal einfach das Dreieck als halbierte Querschnittsfläche des Kegels.
Nun wird deutlich, dass die Höhe h des Kegels der Seite a des 3-Ecks entspricht und
die Seite b dem Radius r des Kreises entspricht.
Kurz in die Volumenformel eingesetzt:
[mm] $V=\bruch{1}{3}Ah=\bruch{1}{3} \pi r^2*h=\bruch{1}{3} \pi [/mm] * [mm] b^2 [/mm] *a$

Jetzt noch den Satz des Pythagoras: [mm] $c^2=36=a^2+b^2 \rightarrow b^2=36-a^2$ [/mm]
Das nun oben eingesetzt:
[mm] $V=\bruch{1}{3} \pi (36-a^2)*a$ [/mm]

Wie du siehst, ist dieser Weg viel einfacher und schöner ;-)

Liebe Grüße
Fugre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]