matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwert Schachtelvolumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extremwert Schachtelvolumen
Extremwert Schachtelvolumen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Schachtelvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Do 22.11.2007
Autor: Nosferatu_Alucard

Aufgabe
Aus einem 40 cm langen und 20 cm breiten Karton soll durch Herausschneiden von 6Quadraten eine Schachtel hergestellt werden, dere Deckel auf 3 Seiten übergreift.
Wie groß sind die Quadrate zu wählen, damit das Volumen der Schachtel möglichst groß wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich finde bei dieser Aufgabe keinen Lösungsansatz, kann jemand die Aufgabe lösen (wenn möglich mit Erklärung) oder mir zumindest mit dem Finden der Zielfunktion helfen ?

MfG
Nosferatu Alucard

        
Bezug
Extremwert Schachtelvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Do 22.11.2007
Autor: leduart

Hallo
Mach dir ne Skizze von dem Karton, schneid die 6 Quadrate raus, 4 an den ecken 2 in der Mitte der Längsseiten. ihre Länge ist x, damit auch die Höhe der Schachtel. die anderen Seiten der Schachtel a und b findest du dann aus x und den gegebenen Seitenlängen raus. Zielfkt ist V=a*b*x
Gruss leduart

Bezug
                
Bezug
Extremwert Schachtelvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Do 22.11.2007
Autor: Nosferatu_Alucard

Also ich hab das jetzt mal durchgerechnet, so wie es für richtig glaube:

V= a*b*x (danke leduart)
a= 20-2x
b=40-3x

V=(20-2x)*(40-3x)*x
  [mm] =-134x^2+800x [/mm]
V'= -268x+800
   => x [mm] \approx [/mm] 2,99
V''= -268 < 0 , also Maximum

Somit müssen immer ca 3cm weggeschnitten werden (also letztendlich ergeben sich für die Schachtel Quadrate von 14cm*14cm)
Wollte nur mal wissen, ob das so stimmt.

Bezug
                        
Bezug
Extremwert Schachtelvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Do 22.11.2007
Autor: leduart

Hallo
> Also ich hab das jetzt mal durchgerechnet, so wie es für
> richtig glaube:
>  
> V= a*b*x (danke leduart)
>  a= 20-2x
>  b=40-3x

erter Fehler, da muss doch Boden und Deckel draus werden!
also  2*b=40-3x

> V=(20-2x)*(40-3x)*x

falsch siehe oben!
hier ist der nächste Fehler! es kommt sicher [mm] x^3 [/mm] vor!
multiplizier nochmal aus!

>    [mm]=-134x^2+800x[/mm]

falsch.
>
Gruss leduart

Bezug
                                
Bezug
Extremwert Schachtelvolumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Do 22.11.2007
Autor: Nosferatu_Alucard


> also  2*b=40-3x

demnach ist b dann doch [mm] \bruch{40-3x}{2} [/mm] also 20-1,5x, richtig?

Dann komme ich aber auf V=(20-2x)*(20-1,5x)*x
und davon finde ich kein Maximum, nur 2 Minima...

Also irgendwie is heut der Wurm drin -.-

Bezug
        
Bezug
Extremwert Schachtelvolumen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Do 22.11.2007
Autor: leduart

Hallo
eine fkt dritten Grades hat NIE 2 Minima, also musst du dich verrechnet haben!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]