matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:54 Fr 16.01.2015
Autor: Nicon1

Aufgabe
Aus einem Blatt Papier (A4-Format mit a = 29,7 cm und b = 21 cm) soll eine quaderförmige Schachtel (mit Deckel) hergestellt werden.
Das Volumen der Schachtel mit den Seiten x, y und z soll maximal werden.

Berechnen Sie die Abmessungen der Schachtel.

Hey Leute,
ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hänge bei der Aufgabe, kann mir irgendwer weiterhelfen?
Soweit ich das sehe, ist das Volumen die Hauptbedingung, da sie maximiert werden soll.

Vielen Dank im Vorraus :)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Fr 16.01.2015
Autor: Al-Chwarizmi


> Aus einem Blatt Papier (A4-Format mit a = 29,7 cm und b =
> 21 cm) soll eine quaderförmige Schachtel (mit Deckel)
> hergestellt werden.
>  Das Volumen der Schachtel mit den Seiten x, y und z soll
> maximal werden.
>  
> Berechnen Sie die Abmessungen der Schachtel.


Hallo Nicon1

           [willkommenmr]

Ist da nichts weiter vorgegeben, z.B. eine Zeichnung mit
einer Art "Schnitt- bzw. Falt-muster" ?
Bei gewöhnlichen Schachteln mit Deckeln ist dieses
Faltmuster nicht ganz simpel, weil z.B. der Deckel noch
einen Rand haben sollte, der über den Unterteil der
Schachtel ragt ....

LG ,   Al-Chwarizmi

Bezug
        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Fr 16.01.2015
Autor: angela.h.b.


> Aus einem Blatt Papier (A4-Format mit a = 29,7 cm und b =
> 21 cm) soll eine quaderförmige Schachtel (mit Deckel)
> hergestellt werden.
>  Das Volumen der Schachtel mit den Seiten x, y und z soll
> maximal werden.
>  
> Berechnen Sie die Abmessungen der Schachtel.


Hallo,

[willkommenmr].

> Ich hänge bei der Aufgabe, kann mir irgendwer
> weiterhelfen?

Wir wüßten ja gern, wie weit Du gekommen bist...

>  Soweit ich das sehe, ist das Volumen die Hauptbedingung,
> da sie maximiert werden soll.

Genau.

V=xyz soll maximal werden.

Das Problem: Du hast hier drei Variablen, und Extremwertberechnung mit drei Variablen kannst Du nicht. Da muß man den Kopf irgendwie elegant aus der Schlinge ziehen.

Nun ist es ja so, daß x,y,z nicht beliebig gewählt werden können.
Die Maße des Blattes setzen Grenzen.

Schau Dir die Skizze an:

wie kannst Du y mithilfe von b und x schreiben?
Wie kannst Du z mithilfe von a und x schreiben?
(Das sind die Nebenbedingungen.)

Wenn Du das hast, kannst Du in V die Variablen y und z eliminieren.
Es bleibt eine Funktion V(x), die nur von x abhängt.
Nun kann eine Extremwertberechnung wie gewohnt starten.

LG Angela


>  
> Vielen Dank im Vorraus :)


Bezug
        
Bezug
Extremwertaufgabe: zur Ausdrucksweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Fr 16.01.2015
Autor: Al-Chwarizmi


> Aus einem Blatt Papier (A4-Format mit a = 29,7 cm und b =
> 21 cm) soll eine quaderförmige Schachtel (mit Deckel)
> hergestellt werden.
>  Das Volumen der Schachtel mit den Seiten x, y und z soll
> maximal werden.
>  
> Berechnen Sie die Abmessungen der Schachtel.

>  Soweit ich das sehe, ist das Volumen die Hauptbedingung,
> da sie maximiert werden soll.


Bemerkungen:

1.)  "Hauptbedingung" ist nicht das Volumen, sondern die
     Bedingung, dass das Volumen maximal werden soll !

2.)  Nicht die Hauptbedingung soll maximiert werden,
     sondern eben das Volumen der Schachtel.

LG  ,   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 42m 1. sancho1980
ULinAEw/Eigenwerte und Matrix
Status vor 3h 47m 9. Ataaga
SGeradEbene/Abstand eines Punktes
Status vor 9h 02m 4. leduart
IntTheo/mehrdim. part. Int., Doppelint
Status vor 23h 07m 3. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 1d 4h 15m 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]