matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 So 26.11.2006
Autor: TryingHard

Aufgabe
Die Gesamtfläche eines Stadions (bestehend aus einem Rechteck und zwei Halbkreisen) soll Maximal werden. Der Umfang ist 400m.

Hallo,

also Zielfunktion und Nebenbedingung habe ich definiert:

ZF: $ [mm] A(a,b)=a\cdot{}b+ \pi \cdot{}({b^2}/4) [/mm] $

NB: [mm] 400=2a+b*\pi [/mm]


Durch Einsetzen entsteht dann dies:

$ [mm] A(b)=\bruch{400-\pi b}{2}\cdot{}b+\pi\cdot{}\bruch{b^2}{4} [/mm] $

Und das wird zusammengefasst zu

$ [mm] A(b)=\bruch{b\cdot{}(800-\pi b)}{4} [/mm] $

Das habe ich ja noch selbst hinbekommen, aber dann bei der Ableitung habe ich wieder mal ein Problem.

ich rechne dann so:

$ [mm] A(b)=\bruch{800b-\pi b^2)}{4} [/mm] $

$ [mm] A'(b)=\bruch{(800-2\pi b)*4-(800b-\pi b^2)}{16} [/mm] $

Denn es muss ja die Quotientenregel angewendet werden
Also [mm] \bruch{u'*v-u*v'}{v^2} [/mm]

Aber wie kann ich das noch zusammenfassen?

$ [mm] A'(b)=\bruch{3200-8\pi b-800b+\pi b^2}{16} [/mm] $

$ [mm] A'(b)=\bruch{400-\pi b-100b+\bruch{\pi}{8} b^2}{2} [/mm] $

Das habe ich jetzt gerechnet. Aber Derive sagt, dass das die Ableitung ist, aber da kann ich ja auch durch kurzen oder irgendwas auch nicht mehr drauf kommen:

$ [mm] A'(b)=\bruch{400-\pi b}{2} [/mm] $


Wäre super, wenn mir jemand meinen Fehler aufzeigen könnte. Vielleicht weiß auch jemand noch eine Seite, wo man solches Zusammenfassen sich anschauen könnte. Irgendwie habe ich damit nämlich immer wieder Probleme.


Vielen Dank schon jetzt!

LG TryingHard

        
Bezug
Extremwertaufgabe: ohne Quotientenregel
Status: (Antwort) fertig Status 
Datum: 13:20 So 26.11.2006
Autor: Loddar

Hallo TryingHrad!


Das funktioniert ohne Quotientenregel viel einfacher (schließlich haben wir im Nenner keine Variable):

$A(b) \ = \ [mm] \bruch{800*b-\pi*b^2}{4} [/mm] \ =\ [mm] \bruch{1}{4}*\left(800*b-\pi*b^2\right) [/mm] \ = \ [mm] 200*b-\bruch{\pi}{4}*b^2$ [/mm]

Und nun ganz einfach mit der MBPotenzregel ...


> [mm]A'(b)=\bruch{(800-2\pi b)*4-(800b-\pi b^2)}{16}[/mm]

Dein Fehler liegt darin, dass Du die Ableitung des Nenners mit $(4)' \ = \ 0$ unterschlägst:

[mm]A'(b) \ = \ \bruch{(800-2\pi*b)*4-\left(800*b-\pi*b^2\right)*\red{0}}{16} \ = \ \bruch{(800-2\pi*b)*4}{16} \ = \ ...[/mm]


Gruß
Loddar


Bezug
                
Bezug
Extremwertaufgabe: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 So 26.11.2006
Autor: TryingHard

Super Danke!

Hab's!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]