matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:23 Di 20.09.2005
Autor: martinmax1234

Hallo,

habe folggendes Problem bei dieser Aufgabe:

Aus einem Baumstamm mit kreisförmigen querschnitt und Durchmesser d wird ein Balken mit recheckigem Querschnitt geschnitten. Die Tragfähigkeit des Balkens ist prpotional zum Produkt aus der Länge g der Grundlinie g und dem Quadraht  der Höhe h: [mm] T0c*g*h^2. [/mm]
Die Tragfähigkeit soll Maximal werden.

Ihr müsst mir die Aufgabe nicht vorrechnen, sondern mir mal erklären was ich genau machen muss und Was meine Haupt und Nebenbediengung ist.

mfg martinmax1234

        
Bezug
Extremwertaufgabe: Ansätze
Status: (Antwort) fertig Status 
Datum: 19:40 Di 20.09.2005
Autor: Loddar

Hallo martinmax!


Am besten mal eine Skizze machen. Dann solltest Du sehen, dass der Durchmesser des Baumstammes $D_$ genau der Diagonale des Rechteckes entspricht.

Mit dem "ollen Griechen" Pythagoras gilt dann: [mm] $D^2 [/mm] \ = \ [mm] b^2 [/mm] + [mm] h^2$ [/mm]

Dies kannst Du nun umstellen nach [mm] $h^2 [/mm] \ = \ [mm] D^2 [/mm] - [mm] b^2$ [/mm] .


Wenn Du dies nun einsetzt in die Zielfunktion $T(b,h) \ = \ [mm] T*b*h^2$ [/mm] , erhältst Du eine Funktion, die nur noch von der Rechteckshöhe $b_$ abhängig ist: $T(b) \ =\ [mm] T*b*\left(D^2-b^2\right) [/mm] \ = \ [mm] T*\left(D^2*b - b^3\right)$ [/mm] .

Für diese Funktion $T(b)_$ kannst Du dann Deine Extremwertberechnung (Nullstellen der 1. Ableitung etc.) durchführen.


Kommst Du nun etwas weiter?

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]