matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungExtremwertbeispiel (Hyperbel)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abiturvorbereitung" - Extremwertbeispiel (Hyperbel)
Extremwertbeispiel (Hyperbel) < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbeispiel (Hyperbel): Anregung/Lösung
Status: (Frage) beantwortet Status 
Datum: 11:41 Sa 03.05.2008
Autor: IlovePhiladelphia

Aufgabe
Welcher Punkt der Hyperbel [mm] 2x^{2}-3y^{2}= [/mm] 54 hat vom Punkt P (15/0) den kleinsten Abstand?

Lösung: [ A(9/6), B(9/-6) ]

Im Prinzip handelt es sich hierbei um ein Extremwertbeispiel mit dem Pythagoras als Zielfunktion. Da ich mir ja den kleinsten Abstand berechnen möchte, muss ich mWn eine Tangente an die Hyperbel legen. Diese kann ich mir zumindest mit der Berührbedingung [mm] d^{2}=a^{2}k^{2}-b^{2} [/mm] ausdrücken lassen. Rechnet man sich [mm] a^{2} [/mm] und [mm] b^{2} [/mm] aus der Hyberbel aus, dann erhält man für [mm] a^{2} [/mm] den Wert 18 und für [mm] b^{2} [/mm] den Wert 27. Diese setze ich dann in die Berührbedingung ein.

Zur gleichen Zeit stelle ich die Formel für den kleinsten Abstand (ich nenne die Variable mal G) mit Hilfe des Pythagoras auf. G = [mm] \wurzel{(15-x)^{2}+y^{2}}. [/mm] Das ist wohl zugleich meine Zielfunktion.

Weiters setzte ich [mm] d^{2}-Gleichung [/mm] in die quadrierte Geradengleichung ein und bekomme [mm] y^{2}=k^{2}x^{2}+18k^{2}-27. [/mm] Und diese wiederum in G [mm] \Rightarrow [/mm]

[mm] G^{2}= (15-x)^{2}+k^{2}x^{2}+18k^{2}-27 [/mm]

So das waren im Prinzip meine ersten Ansätze. Stimmen die bzw. wie gehe ich weiter?

btw: Ich habe in paar Tagen meine M-Abitur. Werde hier in diesem Forum wohl bis dahin noch öfters nachfragen. *g*

Ich wäre natürlich sehr, sehr dankbar, wenn mir jemand helfen könnte...

        
Bezug
Extremwertbeispiel (Hyperbel): Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 03.05.2008
Autor: MathePower

Hallo IlovePhiladelphia,

> Welcher Punkt der Hyperbel [mm]2x^{2}-3y^{2}=[/mm] 54 hat vom Punkt
> P (15/0) den kleinsten Abstand?
>  
> Lösung: [ A(9/6), B(9/-6) ]
>  Im Prinzip handelt es sich hierbei um ein
> Extremwertbeispiel mit dem Pythagoras als Zielfunktion. Da
> ich mir ja den kleinsten Abstand berechnen möchte, muss ich
> mWn eine Tangente an die Hyperbel legen. Diese kann ich mir
> zumindest mit der Berührbedingung [mm]d^{2}=a^{2}k^{2}-b^{2}[/mm]
> ausdrücken lassen. Rechnet man sich [mm]a^{2}[/mm] und [mm]b^{2}[/mm] aus der
> Hyberbel aus, dann erhält man für [mm]a^{2}[/mm] den Wert 18 und für
> [mm]b^{2}[/mm] den Wert 27. Diese setze ich dann in die
> Berührbedingung ein.
>  
> Zur gleichen Zeit stelle ich die Formel für den kleinsten
> Abstand (ich nenne die Variable mal G) mit Hilfe des
> Pythagoras auf. G = [mm]\wurzel{(15-x)^{2}+y^{2}}.[/mm] Das ist wohl
> zugleich meine Zielfunktion.
>
> Weiters setzte ich [mm]d^{2}-Gleichung[/mm] in die quadrierte
> Geradengleichung ein und bekomme
> [mm]y^{2}=k^{2}x^{2}+18k^{2}-27.[/mm] Und diese wiederum in G
> [mm]\Rightarrow[/mm]
>  
> [mm]G^{2}= (15-x)^{2}+k^{2}x^{2}+18k^{2}-27[/mm]
>  
> So das waren im Prinzip meine ersten Ansätze. Stimmen die
> bzw. wie gehe ich weiter?

Von Berührung ist hier keine Rede.

Forme die Hyperbelgleichung nach y um, und setze sie in G ein.

>  
> btw: Ich habe in paar Tagen meine M-Abitur. Werde hier in
> diesem Forum wohl bis dahin noch öfters nachfragen. *g*

Viel Erfolg dabei.

>  
> Ich wäre natürlich sehr, sehr dankbar, wenn mir jemand
> helfen könnte...

Gruß
MathePower

Bezug
                
Bezug
Extremwertbeispiel (Hyperbel): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Sa 03.05.2008
Autor: IlovePhiladelphia

Japp, habe das Ergebnis. Manchmal darf man einfach nicht zu kompliziert denken...:-p

Danke noch mal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]