matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Verständnis
Status: (Frage) beantwortet Status 
Datum: 19:29 Mo 24.02.2014
Autor: matheschenie

Aufgabe
Bestimmen sie die Seitenlänge a und b und den Flächeninhalt A desjenigen Dreiecks, das bei gegebener diagonallänge [mm] (d=6\wurzel{2}) [/mm] maximalen Flächeninhalt A hat.

(Lösung: a=6 cm b=6cm A=36cm²



Die Aufgabe ist an sich kein Problem. Hab die Zielfunktion bereits aufgestellt und müsste sie nurnoch ableiten und auf Extrema untersuchen.

Zielfkt.:A= [mm] (\wurzel{72-b^2})*b [/mm]

Meine Frage ist nur, wie ich so einem Term jetzt auflösen kann, so dass ich eine Ableitung bilden kann.. Die wurzel in der Klammer verwirrt mich da doch sehr ..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mo 24.02.2014
Autor: Sax

Hi,

> Bestimmen sie die Seitenlänge a und b und den
> Flächeninhalt A desjenigen Dreiecks, das bei gegebener
> diagonallänge [mm](d=6\wurzel{2})[/mm] maximalen Flächeninhalt A
> hat.
>  
> (Lösung: a=6 cm b=6cm A=36cm²
>  
>
> Die Aufgabe ist an sich kein Problem. Hab die Zielfunktion
> bereits aufgestellt und müsste sie nurnoch ableiten und
> auf Extrema untersuchen.
>  
> Zielfkt.:A= [mm](\wurzel{72-b^2})*b[/mm]
>  
> Meine Frage ist nur, wie ich so einem Term jetzt auflösen
> kann, so dass ich eine Ableitung bilden kann.. Die wurzel
> in der Klammer verwirrt mich da doch sehr ..

Wenn dich die Wurzel in der Klammer verwirrt, dann kannst du die Klammer auch weglassen.

>  

Jetzt etwas ernster:

Du kannst zunächst den Faktor b (positiv) unter die Wurzel ziehen und erhälst A = [mm] \sqrt{72b^2-b^4}. [/mm] Jetzt kannst du dir folgende Überlegung zunutze machen : aufgrund der Monotonie der Wurzelfunktion hat A dort ein Maximum, wo das für die Funktion [mm] 72b^2-b^4 [/mm] zutrifft.

Gruß Sax.

Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Mo 24.02.2014
Autor: matheschenie

Ahh.. Vielen Dank für deine Hilfe ... Ich hatte echt keine Ahnung wie ich das b mit unter die Wurzel ziehen konnte.. Gibt es da irgendein Gesetz für ?

Außerdem: Wenn man eine Zahl mit unter eine Wurzel zieht muss man diese, wenn ich das richtig verstanden habe, immer quadrieren ?

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Mo 24.02.2014
Autor: DieAcht

Hallo,


> Ich hatte echt keine
> Ahnung wie ich das b mit unter die Wurzel ziehen konnte..
> Gibt es da irgendein Gesetz für ?  
> Außerdem: Wenn man eine Zahl mit unter eine Wurzel zieht
> muss man diese, wenn ich das richtig verstanden habe, immer
> quadrieren ?

Allgemein kann man hier keine Aussage treffen, da es auf den
Wurzelexponenten ankommt. Mach dir aber folgendes klar:

      [mm] \sqrt[n]{x}=x^{\frac{1}{n}} [/mm]

Hier kannst du natürlich auch nicht beliebiges $x$ nehmen (wieso?).

Unter deiner Wurzel steht etwas positives. Nun kannst du dir
mal überlegen wie du folgendes noch vereinfachen kannst:

      [mm] \sqrt{x^2}=? [/mm] mit [mm] $x\ge [/mm] 0$.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 41m 1. sancho1980
ULinAEw/Eigenwerte und Matrix
Status vor 3h 46m 9. Ataaga
SGeradEbene/Abstand eines Punktes
Status vor 9h 0m 4. leduart
IntTheo/mehrdim. part. Int., Doppelint
Status vor 23h 05m 3. HJKweseleit
GraphTheo/Zusammenhängender Zufallsgraph
Status vor 1d 4h 14m 6. HJKweseleit
ULinAAb/Kern und Bild bestimmen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]