matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - Extremwertproblem
Extremwertproblem < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:24 Di 16.09.2008
Autor: Laythuddin

Aufgabe
[mm] f(x)=\bruch{6}{x^2+2} [/mm]

Punkt A(P(z)|f(z)) z > 0

Ein Rechtwinkliges Dreiek ist am Punkt A unter dem Graphen mit oben genannter Funktion gezeichnet. Wie groß muß z gewählt werden damit das Dreieck die maximale Fläche hat?

Hi

Habe oben genannte Aufgabe. Hab aber leider keinen Ansatz. Wäre euch für eure Hilfen sehr dankbar.

Danke im voraus

Gruß

Laythuddin

        
Bezug
Extremwertproblem: Dreieck
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Di 16.09.2008
Autor: clwoe

Hallo,

ich finde diese Angabe sehr ungenau. Wo liegt denn jetzt genau der Punkt A? Ich denke auf dem Graphen oder? Außerdem brauchst du einen weiteren Punkt, der fix ist. Wenn dann A entlang des Graphen verschoben wird, wird der Punkt senkrecht darunter automatisch mitverschoben da es ja ein rechtwinkliges Dreieck sein soll. Wenn dann ein dritter Punkt fix ist kann man berechnen für welches x der Flächeninhalt des Dreiecks maximal wird.

Gruß,
clwoe


Bezug
        
Bezug
Extremwertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Di 16.09.2008
Autor: fred97


> [mm]f(x)=\bruch{6}{x^2+2}[/mm]
>  
> Punkt A(P(z)|f(z)) z > 0
>  
> Ein Rechtwinkliges Dreiek ist am Punkt A unter dem Graphen
> mit oben genannter Funktion gezeichnet. Wie groß muß z
> gewählt werden damit das Dreieck die maximale Fläche hat?
>  Hi
>  
> Habe oben genannte Aufgabe. Hab aber leider keinen Ansatz.
> Wäre euch für eure Hilfen sehr dankbar.
>  
> Danke im voraus
>  
> Gruß
>  
> Laythuddin



Was ist denn P(z) ?

FRED

Bezug
                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Di 16.09.2008
Autor: Laythuddin

Aufgabe
betrachtet wird das abgebildete rechtwinklige dreieck, dessen eckpunkt
P(z/f(z)) für z > 0 auf dem graphen der funktion f(x)= [mm] \bruch{6}{x^2 + 2} [/mm] liegt.
wie muss z gewählt werden, damit der Inhalt des dreiecks maximal wird???

Habe oben genannte Aufgabe nun korrigiert. Hab aber leider keinen Ansatz. Wäre euch für eure Hilfen sehr dankbar.

Danke im voraus

Gruß

Laythuddin

Bezug
                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Di 16.09.2008
Autor: fred97


> betrachtet wird das abgebildete


wo ?  wo?


>rechtwinklige dreieck,

> dessen eckpunkt
>  P(z/f(z)) für z > 0 auf dem graphen der funktion f(x)=

> [mm]\bruch{6}{x^2 + 2}[/mm] liegt.
>  wie muss z gewählt werden, damit der Inhalt des dreiecks
> maximal wird???
>  Habe oben genannte Aufgabe nun korrigiert. Hab aber leider
> keinen Ansatz. Wäre euch für eure Hilfen sehr dankbar.
>  
> Danke im voraus
>  
> Gruß
>  
> Laythuddin


Ich interpretiere diese ungenaue Aufgabenstellung mal so:

Das Dreieck  hat die Ecken (0|0), (z|0) und (z|f(z)). Dann ist der Inhalt A(z)  dieses Dreiecks gegeben durch (Skizze !!)

A(z) = (f(z)z)/2. Diese Funktion sollst Du maximieren.


FRED



Bezug
                                
Bezug
Extremwertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Di 16.09.2008
Autor: Laythuddin

Hi

Genau das sind die Eckpunkte des Dreiecks. Wie würde es denn jetzt weiter gehen?

Danke

Guß

Laythuddin

Bezug
                                        
Bezug
Extremwertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Di 16.09.2008
Autor: Steffi21

Hallo, für deine Dreieck ist bekannt: Fläche=0,5*Grundseite*Höhe

Grundseite ist z
Höhe ist f(z)

[mm] A(z)=\bruch{1}{2}*z*f(z) [/mm]

[mm] A(z)=\bruch{1}{2}*z*\bruch{6}{z^{2}+2}=\bruch{3z}{z^{2}+2} [/mm]

so jetzt Extremwertaufgabe, also 1. Ableitung, ........

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]