matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertprobleme
Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertprobleme: Hilfe benötigt
Status: (Frage) beantwortet Status 
Datum: 09:43 So 04.03.2007
Autor: malinchen

Hallo,
ich hab grad in der Schule mit dem Thema Extremwertproblemen angefangen. So weit bin ich ganz klar gekommen aber bei der nachsten Aufgabe brauch ich Hilfe:

Aufgabe
Es sollen zylinderförmige Dosen mit dem Volumen V gergestellt werden. Wie sind r und h zu wählen, damit
a.) die gesamte Naht aus Mantellinie, Deckelrand und Bodenrand minimal wird)
b.) die Oberfläche möglichst klein wird?


Die Formel für das Volumen ist V= [mm] \pi* r^2*h [/mm]
Für die Manteloberfläche finde ich nur verschieden Formeln von denen ich nicht weiß welche richtig ist.

Weiter bin ich bis jetzt leider nicht. Kann mir bitte jemand helfen?

Gruß Malinchen

        
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 So 04.03.2007
Autor: hase-hh

moin,

also die Mantelfläche eines -geraden!- Zylinders (für Fanta-Dosen o.ä., ein schiefer zylinder hätte gravierende nachteile)

[mm] A_{M}= 2*\pi*r*h [/mm]  

Grundfläche

[mm] A_{G}= \pi*r^2 [/mm]  


und Oberfläche

[mm] A_{O}= A_{M}+ 2*A_{G} [/mm] = [mm] 2*\pi*r*h [/mm] + [mm] 2*\pi*r^2 [/mm]

= [mm] 2*\pi*r*(h+r) [/mm]


Für die Naht addierst du eben alle genannten Linien.

s. []http://de.wikipedia.org/wiki/Zylinder_%28Geometrie%29


gruß
wolfgang







Bezug
                
Bezug
Extremwertprobleme: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:27 So 04.03.2007
Autor: malinchen

Ja, aber bei der a.) muss ich ja ausrechnen wie r und h zu wählen sind, damit die gesamte Naht minimal wird. Dazu muss sich ja die Extrempunkte ausrechnen. Und die Formel die ich hab kann man nicht, oder man kann doch aber ich kann sie nicht, ableiten. Wie mach ich das denn?

Gruß Malinchen

Bezug
                        
Bezug
Extremwertprobleme: Haupt- und Nebenbedingung
Status: (Antwort) fertig Status 
Datum: 10:33 So 04.03.2007
Autor: Loddar

Hallo Malinchen!


Die Nebenbedingung hast Du mit $V \ = \ [mm] \pi*r^2*h$ [/mm] bereits aufgestellt. Stelle diese Formel nun mal um nach $h \ = \ ...$ .


Wie lautet denn die Formel der Hauptbedingung (Summe aller Nahtlinien) $N \ = \ N(r,h)$ ? In diese Formel musst Du Dein $h \ = \ ...$ aus der Nebenbedingung einsetzen.

Damit hast Du dann Deine Zielfunktion $N(r)_$ , welche nur noch von $r_$ abhängig ist. Für diese Funktion ist $N(r)_$ ist dann die Extremwertberechnung (Nullstellen der 1. Ableitung usw.) durchzuführen.


Gruß
Loddar


Bezug
                                
Bezug
Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 So 04.03.2007
Autor: malinchen

also ist h dann gleich:
h= [mm] \bruch{V}{\pi*r^2} [/mm]

Die Summe aller Nahtlinien ist dachte ich ist einfach die Formel für die Mantelfläche... [mm] 2*\pi*r*(h+r) [/mm] aber das kann doch irgendwie gar nicht sein?



Bezug
                                        
Bezug
Extremwertprobleme: falsche Formel
Status: (Antwort) fertig Status 
Datum: 10:56 So 04.03.2007
Autor: Loddar

Hallo Malinchen!


> also ist h dann gleich:   h= [mm]\bruch{V}{\pi*r^2}[/mm]

[ok]

  

> Die Summe aller Nahtlinien ist dachte ich ist einfach die
> Formel für die Mantelfläche... [mm]2*\pi*r*(h+r)[/mm] aber das kann
> doch irgendwie gar nicht sein?

Das ist hier die falsche Formel ... schließlich ist das eine Fläche, die hier berechnet wird (außerdem ist das bereits die Gesamtoberfläche und nicht nur die Mantelfläche), und keine Länge.

Aber für Aufgabe b.) solltest Du diese Fromel auf jeden Fall behalten.


Hier musst Du den Umfang des Kreises (2-mal) sowie die Höhe des Zylinders addieren.


Gruß
Loddar


Bezug
                                                
Bezug
Extremwertprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:14 So 04.03.2007
Autor: malinchen

entschuldigung, dass ich so nerve...
aber ich verstehe nicht wieso man zur kreisfläche die man 2-mal nimmt noch h dazu addieren muss.

Bezug
                                                        
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 So 04.03.2007
Autor: angela.h.b.


> entschuldigung, dass ich so nerve...
>  aber ich verstehe nicht wieso man zur kreisfläche

Hallo,

doch nicht zur KreisFLÄCHE!!!!!!!
Zum Kreisumfang.
Es geht doch um Längen.


die man

> 2-mal nimmt noch h dazu addieren muss.

Schau Dir doch mal 'ne Konservenbüchse an!

Was machst Du, wenn Du ein großes Stück Blech hast und daraus eine Büchse basteln möchtest? Du schneidest Dir ein Rechteck aus, biegst es zum Zylinder und "nähst " es zusammen. Wo ist die Naht? An der Seite. Und wenn Du kein Chaot bist, ist sie schon gerade und senkrecht zum noch nicht vorhandenen Boden. Also die Höhe h. Nun mußt Du noch Boden und Deckel anbringen. Also zweimal die Kreisumfänge "annähen".

Gruß v. Angela

P.S.: Basteln aus Papier ist vielleicht praktikabler... Mach es doch mal. Da wird Dir aufgehen, was für Nähte man hat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]