matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwertprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwertprobleme
Extremwertprobleme < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertprobleme: allgemeine herangehensweise
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 19.04.2005
Autor: reya

Hallo Leute,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich hab ein problem mit extremwertprobleme, da ich aktuell kein beispiel mehr finde, um es für mich selbst erschließbar zu machen.

am beispiel:

In einer Pyramide soll ein kugelförmiger Behälter gelagert werden. (quadratisch, a=6cm, h=6 __ originalangaben sind mit vektorrechnung zu erschließen gewesen) Welchen Radius kann dieser Behälter höchstens haben ?

es geht mir da vor allem um den ansatz und um die formelfindung, die ich ableiten und etc. muss.

danke im voraus. :)

        
Bezug
Extremwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 19.04.2005
Autor: Max


> Hallo Leute,

Hallo Stefan,


dir ein herzliches
[willkommenmr]



> ich hab ein problem mit extremwertprobleme, da ich aktuell
> kein beispiel mehr finde, um es für mich selbst
> erschließbar zu machen.
>  
> am beispiel:
>  
> In einer Pyramide soll ein kugelförmiger Behälter gelagert
> werden. (quadratisch, a=6cm, h=6 __ originalangaben sind
> mit vektorrechnung zu erschließen gewesen) Welchen Radius
> kann dieser Behälter höchstens haben ?

Naja, aus einer Skizze kann man doch entnehmen, dass der Mittelpunkt $M$ diese kugelförmigen Behälters von allen Seitenflächen den gleichen Abstand haben muss und dieser maximal sein muss. Aus Symmetriegründen reicht es genau eine Seitenfläche $S$ und die Grundfläche $G$ zu betrachten.

$r=d(M;G) = d(M;S)$ muss dann maximal werden. Den Punkt $M$ kann man hoffentlich so legen, dass er nur von einer Variablen abhängt, zB $M(0|0|z)$.

  
Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]