matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenFaktorgruppe von S3
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Faktorgruppe von S3
Faktorgruppe von S3 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe von S3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:13 Sa 05.05.2018
Autor: TrickyDinkle

Aufgabe
Geben Sie die Faktorgruppe [mm] S_3/N [/mm] an.

In den vorausgegangenen Aufgaben habe ich schon die Normalteiler bestimmt, bin allerdings hier überfragt was gemeint ist.

Wir haben definiert "Es sein N Normalteiler einer Gruppe G. Dann ist G/N zusammen mit der Komplexmultiplikation als Verknüpfung eine Gruppe, die sogenannte Faktorgruppe". Ohne weitere Erklärung. Als einziges Beispiel [mm] \IZ_n=\IZ/n\IZ, [/mm] auch ohne jede Erklärung.

Die Wikipedia Definition hilft mir auch nicht wirklich weiter.

Als Antwort auf die Frage habe ich zwar gefunden, dass Faktorgruppe [mm] S_3/N [/mm] =
[mm] S_3/S_3 [/mm] = {1}              (Begründung: "trivial")
[mm] S_3/{id} [/mm] = [mm] S_3 [/mm]               (Begründung: "trivial")
[mm] S_3/(1,2,3)=\IZ/2\IZ [/mm]          (Begründung: "weil der Index 2 ist und es nur eine Gruppe mit Ordnung 2 gibt")
Allerdings verstehe ich nicht was damit gemeint ist oder wie man es herleitet.

Kann mir jemand da einen Tipp geben wie man darauf kommt oder was das bedeutet?

Die Lösung abschreiben hilft mir wenig wenn ich es nicht verstehe.

        
Bezug
Faktorgruppe von S3: Antwort
Status: (Antwort) fertig Status 
Datum: 05:54 Sa 05.05.2018
Autor: angela.h.b.


> Geben Sie die Faktorgruppe [mm]S_3/N[/mm] an.
> In den vorausgegangenen Aufgaben habe ich schon die
> Normalteiler bestimmt, bin allerdings hier überfragt was
> gemeint ist.

>

> Wir haben definiert "Es sein N Normalteiler einer Gruppe G.
> Dann ist G/N zusammen mit der Komplexmultiplikation als
> Verknüpfung eine Gruppe, die sogenannte Faktorgruppe".
> Ohne weitere Erklärung. Als einziges Beispiel

Hallo,

zunächst schauen wir mal an, wie G/N definiert ist:

[mm] G/N:=\{gN|g\in G\} [/mm]

Die Elemente von G/N sind Mengen, nämlich sämtliche Linksnebenklassen von N,
also alle Mengen, die man bekommt, wenn man [mm] gN:=\{g\circ n|n\in N} [/mm] für sämtlich [mm] g\in [/mm] G bildet.

Dies würde ich jetzt einfach mal für die Gruppe [mm] S_3 [/mm] tun.
Bzgl. der Bezeichnungen übernehme ich mal die aus der wikipedia: [mm] S_3 [/mm] = [mm] \{ e , d , d^2 , s_1 , s_2 , s_3 \} [/mm] .

Die Normalteiler hast Du schon herausgefunden, schreibst Du.
Es sind [mm] \{e\}, S_3, \{e,d,d^2\}. [/mm]

Ich gehe die Sache jetzt ganz "kindlich" an, rein nach den Definitionen,
ohne Zuhilfenahme weiterer Sätze.

1.
Schauen wir zunächst [mm] S_3/\{e\} [/mm] an:

Es ist [mm] S_3/\{e\}:=\{g\{e\}|g\in S_3\}. [/mm]

Du mußt also berechnen
[mm] e\{e\}=\{ee\}=\{e\} [/mm]
[mm] d\{e\}=\{de\}=\{d\} [/mm]
[mm] d^2\{e}=... [/mm]
[mm] s_1\{e\}=... [/mm]
[mm] s_2\{e\}=... [/mm]
[mm] s_3\{e\}=... [/mm]

[mm] S_3/\{e\} [/mm] ist die Menge, die diese sechs Mengen enthält.

2.
Nun [mm] S_3/S_3: [/mm]

Es ist [mm] S_3/S_3:=\{gS_3|g\in S_3\}. [/mm]

Du mußt also berechnen
[mm] eS_3=\{ee,ed,ed^2,es_1,es_2,es_3\}=\{e,d,d^2,s_1,s_2,s_3\}=S_3 [/mm]
[mm] dS_3=\\{dde,dd,dd^2,ds_1,ds_2,ds_3\}=... [/mm]
[mm] d^2S_3=... [/mm]
[mm] s_1S_3=... [/mm]
[mm] s_2S_3=... [/mm]
[mm] s_3S_3=... [/mm]

Du wirst sehen, daß man immer [mm] S_3 [/mm] erhält.
Die Menge [mm] S_3/S_3 [/mm] ist einelementig, es ist [mm] S_3/S_3=\{S_3\} [/mm]

3.
Jetzt [mm] S_3/\{e,d,d^2\}: [/mm]

[mm] e\{e,d,d^2\}=\{ee,ed,ed^2\}=\{e,d,d^2\} [/mm]
[mm] d\{e,d,d^2\}=\{de,dd,dd^2\}=\{...\} [/mm]
[mm] d^2\{e,d,d^2\}=... [/mm]
[mm] s_1\{e,d,d^2\}=... [/mm]
[mm] s_2\{e,d,d^2\}=... [/mm]
[mm] s_3\{e,d,d^2\}=... [/mm]

Du wirst sehen, daß [mm] S_3/\{e,d,d^2\} [/mm] eine zweielementige Menge ist.

LG Angela




>

> Als Antwort auf die Frage habe ich zwar gefunden, dass
> Faktorgruppe [mm]S_3/N[/mm] =
> [mm]S_3/S_3[/mm] = {1} (Begründung: "trivial")
> [mm]S_3/{id}[/mm] = [mm]S_3[/mm] (Begründung: "trivial")
> [mm]S_3/(1,2,3)=\IZ/2\IZ[/mm] (Begründung: "weil der
> Index 2 ist und es nur eine Gruppe mit Ordnung 2 gibt")
> Allerdings verstehe ich nicht was damit gemeint ist oder
> wie man es herleitet.

>

> Kann mir jemand da einen Tipp geben wie man darauf kommt
> oder was das bedeutet?

>

> Die Lösung abschreiben hilft mir wenig wenn ich es nicht
> verstehe.


Bezug
                
Bezug
Faktorgruppe von S3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:10 Sa 05.05.2018
Autor: TrickyDinkle

Ich habe jetzt 1. und 2. nachgerechnet und auch mühevoll hingeschrieben. Das scheint ja immer in [mm] S_n [/mm] zu gelten und man muss es nur lernen.

Aber wie komme ich bei 3. auf die Gruppe? Wir haben bei uns die Benennung (),(12),(13),(23),(123),(132) für die Permutationen.

Den Normalteiler habe ich als {(),(123),(132)} gefunden, der hätte aber 3 Elemente.

Ich kann jetzt nachrechnen in der Form:
(12){(),(123),(132)}={(12)(),(12)(123),(12)(132)}={(12),(23),(13)}
(13){(),(123),(132)}=...={(13),(12),(23)}
(23){(),(123),(132)}=...={(23),(13),(12)}
(123){(),(123),(132)}=...={(123),(132),()}
(132){(),(123),(132)}=...={(132),(),(123)}
(){(),(123),(132)}=...={(),(123),(132)}
Aber wie komme ich überhaupt auf die Idee, genau diese Werte nachzurechnen? Ausprobieren aller Möglichkeiten wäre endlose Schreibarbeit und Bei [mm] S_4, S_5, [/mm] ..., [mm] S_n [/mm] doch quasi unmöglich.

Ich habe jetzt 2 Elemente in der Menge, aber wie deckt sich das mit [mm] $S_3/(1,2,3)=\IZ/2\IZ$ [/mm] oder "weil der Index 2 ist und es nur eine Gruppe mit Ordnung 2 gibt" ?

Bezug
                        
Bezug
Faktorgruppe von S3: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 So 06.05.2018
Autor: angela.h.b.


> Ich habe jetzt 1. und 2. nachgerechnet und auch mühevoll
> hingeschrieben. Das scheint ja immer in [mm]S_n[/mm] zu gelten

Hallo,

ich weiß nicht genau, was Du mit "das" meinst.

>und

> man muss es nur lernen.

>

> Aber wie komme ich bei 3. auf die Gruppe? Wir haben bei uns
> die Benennung (),(12),(13),(23),(123),(132) für die
> Permutationen.


>

> Den Normalteiler habe ich als {(),(123),(132)} gefunden,
> der hätte aber 3 Elemente.

Wieso "hätte"?
Es gibt drei Normalteiler, die beiden trivialen [mm] \{()\}, S_3 [/mm] und den von Dir genannten [mm] \{(),(123),(132)\} [/mm]

>

> Ich kann jetzt nachrechnen in der Form:

>

> (12){(),(123),(132)}={(12)(),(12)(123),(12)(132)}={(12),(23),(13)}
> (13){(),(123),(132)}=...={(13),(12),(23)}
> (23){(),(123),(132)}=...={(23),(13),(12)}
> (123){(),(123),(132)}=...={(123),(132),()}
> (132){(),(123),(132)}=...={(132),(),(123)}
> (){(),(123),(132)}=...={(),(123),(132)}
> Aber wie komme ich überhaupt auf die Idee, genau diese
> Werte nachzurechnen?

Eine Idee braucht man dafür nicht. Es ergibt sich aus den Definitionen. Das habe ich doch in meinem gestrigen Beitrag erklärt.

> Ausprobieren aller Möglichkeiten
> wäre endlose Schreibarbeit und Bei [mm]S_4, S_5,[/mm] ..., [mm]S_n[/mm] doch
> quasi unmöglich.

Es ist doch "kein Ausprobieren aller Möglichkeiten", was Du hier tust, sondern das Auflisten der Nebenklassen durch schnödes Ausrechnen.

Klar, für [mm] S_{144} [/mm] hätte niemand Lust, das zu tun, da würde man sich der Sache eher denkend mithilfe von irgendwelchen Sätzen nähern - aber hier haben wir ja übersichtlich wenige Elemente, so daß man sich den Spaß mal gönnen kann.

>

> Ich habe jetzt 2 Elemente in der Menge, aber wie deckt sich
> das mit [mm]S_3/(1,2,3)=\IZ/2\IZ[/mm]

Das Gleichheitszeichen meint hier "isomorph".


> oder "weil der Index 2 ist und
> es nur eine Gruppe mit Ordnung 2 gibt" ?

Genau.

Mit dem Satz von Lagrange kannst Du das natürlich schnell ohne jedes Rechnen herausfinden, aber ich hatte Dich so verstanden, daß Du die Faktorgruppe und ihre Elemente überhaupt nicht verstanden hattest.

LG Angela

Bezug
                                
Bezug
Faktorgruppe von S3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 So 06.05.2018
Autor: TrickyDinkle

Ok, da hatte ich mich vielleicht etwas schlecht ausgedrückt.

Also, nehmen wir mal [mm] $S_{144}$ [/mm] als Beispiel. Auch dort werden {(id)} und [mm] $S_{144}$ [/mm] Normalteiler sein. Aber wie findet man weitere?

Die Aufgabenstellung für [mm] S_3 [/mm] war nicht alle Normalteiler zu finden, sondern bei ein paar vorgegebenen zu prüfen, ob es Normalteiler sind.

Wie würde man prinzipiell für [mm] S_3 [/mm] oder [mm] $S_n$ [/mm] die Normalteiler finden, abgesehen von "alle Kombinationen durchprobieren"? ({(),(12),(13)} oder {(),(12),(23)} oder ... könnten ja theoretisch auch alles Normalteiler sein und nur durch Nachrechnen findet man heraus, dass es keine sind)

Den Satz von Lagrange hatten wir zumindest vom Namen her nicht, wir haben nur gesagt, dass bei endlich vielen Elementen alle Untergruppen gleich groß sind. Wie würde der Satz denn weiterhelfen?

Bezug
                                        
Bezug
Faktorgruppe von S3: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 So 06.05.2018
Autor: hippias

Alle Normalteiler einer Gruppe zu finden, kann eine sehr anspruchsvolle Aufgabe sein. Daher ist Deine Verwunderung verständlich, sollte Dich aber nicht zu sehr bestürzen.

Im Falle der symmetrischen Gruppen [mm] $S_{n}$ [/mm] ist es aber nicht so schwierig: neben den trivialen Normalteilern besitzt [mm] $S_{n}$ [/mm] nur noch genau einen Normalteiler (ausser im Fall $n=4$: dann gibt es noch einen). Dafür wirst Du sicher bald einen Beweis präsentiert bekommen, kannst es aber auch selbst nachlesen oder sogar versuchen es selbst zu beweisen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]