matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenFaktorisieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Faktorisieren
Faktorisieren < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Sa 26.09.2009
Autor: Dinker

Guten Abend

Blöde Frage


[mm] 64x^3 [/mm] + 1

Was kann ich da faktorisieren?`

Danke
Gruss Dinker

        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Sa 26.09.2009
Autor: angela.h.b.


> Guten Abend
>  
> Blöde Frage
>  
>
> [mm]64x^3[/mm] + 1
>  
> Was kann ich da faktorisieren?'

Hallo,

[mm] -\bruch{1}{4} [/mm] ist eine Nullstelle des Polynoms.

Also kannst Du [mm]64x^3[/mm] + 1 schreiben als [mm] (x+\bruch{1}{4})*quadratisches \quad [/mm] Polynom.

Bei dem quadratischen Polynom mußt Du dann damit rechnen, daß es keine reelle Nullstelle hat.

Gruß v. Angela

Bezug
                
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Sa 26.09.2009
Autor: Dinker

Halo Angela.

Leider kann ich es nicht wirklich nachvollziehen.

Wenn ich eine Nullstelle von 1/4 habe, wieso gibt das dann (1 + 1/4) * quadratisches Polynom?

Meinst du mit dem quadratischen Polynom : [mm] 64x^2 [/mm] + 1?

Danke
Gruss Dinker

Bezug
                        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Sa 26.09.2009
Autor: angela.h.b.


> Halo Angela.
>  
> Leider kann ich es nicht wirklich nachvollziehen.
>
> Wenn ich eine Nullstelle von 1/4 habe, wieso gibt das dann
> (1 + 1/4) * quadratisches Polynom?

Hallo,

das muß (x+ 1/4) * quadratisches Polynom heißen.

Welches quadratische Polynom es ist, mußt Du Dir ausrechnen, entweder, wenn Du das kannst, mit Polynomdivision oder durch Lösung von [mm] 64x^3+1=(x+ 1/4)*(ax^2+bx+c) [/mm]

Generell ist es so: wenn ein Polynom die Nullstelle [mm] r_0 [/mm] hat, kannst Du den Linearfaktor [mm] (x-r_0) [/mm] herausziehen.
Das hab' ich gemacht.

Gruß v. Angela


>  
> Meinst du mit dem quadratischen Polynom : [mm]64x^2[/mm] + 1?
>  
> Danke
>  Gruss Dinker


Bezug
                                
Bezug
Faktorisieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 27.09.2009
Autor: Dinker

Hallo

Also in diesem Fall würde ich erhalten:

(x + [mm] \bruch{1}{4})*(64x^2 [/mm] -16x + 4).

Oder wie würde die vollständige Faktorisierung aussehen?

Dake
Gruss Dinker

Bezug
                                        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 So 27.09.2009
Autor: steppenhahn

Hallo Dinker!

> Also in diesem Fall würde ich erhalten:
>  
> (x + [mm]\bruch{1}{4})*(64x^2[/mm] -16x + 4).

Das ist so richtig [ok],
gut gemacht :-)

Grüße,
Stefan

Bezug
        
Bezug
Faktorisieren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 So 27.09.2009
Autor: Al-Chwarizmi


> Guten Abend
>  
> Blöde Frage
>  
>
> [mm]64x^3[/mm] + 1
>  
> Was kann ich da faktorisieren?'
>  
> Danke
>  Gruss Dinker


Hallo Dinker,

dies ist wieder mal ein Fall für die oft nützliche
Formel:

    $\ [mm] a^n+b^n\ [/mm] =\ [mm] (a+b)*\left(a^{n-1}\red{\mathbf{\,-\,}}a^{n-2}*b^{1}\blue{\mathbf{\,+\,}}a^{n-2}*b^{2}\red{\mathbf{\,-\,}}\,.......\,\mathbf{\pm} b^{n-1}\right)$ [/mm]

Hier also:

    $\ [mm] a^3+b^3\ [/mm] =\ [mm] (a+b)*\left(a^2-a*b+b^2\right)$ [/mm]



LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]