matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraFaktorisierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Faktorisierung
Faktorisierung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Do 25.08.2016
Autor: Fry

Hallo zusammen :)

ich suche für die Zahl 10 neben den Zerlegungen [mm]10=2\cdot 5=\left(\frac{1+\sqrt{-39}}{2}\right)\left(\frac{1-\sqrt{-39}}{2}\right)[/mm]
eine dritte nichttriviale Zerlegung in [mm]\mathbb Z\left[\frac{1+\sqrt{-39}}{2}\right]=\{a+b\omega, a,b\in\mathbb Z\}[/mm]
mit [mm]\omega:=\frac{1+\sqrt{-39}}{2}[/mm].

Hat jemand da eine "spontane" Idee?




Eine Möglichkeit, einen der beiden Faktoren auszurechnen, soll darin liegen, den Erzeuger des Ideals in [mm]\mathbb Z[\omega][/mm]
[mm]a=(5,\frac{1+\sqrt{-39}}{2})\cdot (2,\frac{1-\sqrt{-39}}{2})[/mm] zu bestimmen.
Für Ideale gilt ja die Rechenregel [mm](a_1,...,a_n)(b_1,...,b_m)=(a_1b_1,...,a_nb_m)[/mm].
Daher ist [mm]a=\left(10,1+\sqrt{-39},\frac{5}{2}(1-\sqrt{-39},10\right)=\left(10,1+\sqrt{-39},\frac{5}{2}(1-\sqrt{-39})\right)[/mm]
Nun müsste man einen gemeinsamen Teiler c ausklammern in der Form [mm]a=(c)\cdot(...,...,...)[/mm].
$(...,...,...)$ muss dann $=(1)$ sein. Aber ich finde schon keinen gemeinsamen Teiler :(.



Im Kapitel Dedekindsche Idealtheorie des Buches Koch, Zahlentheorie, S.62 f. findet sich ein anderes Beispiel für [mm]\mathbb Z[\sqrt{-5}][/mm].

(https://books.google.de/books?id=KBIgBgAAQBAJ&pg=PA62&lpg=PA62&dq=koch+dedekindsche+idealtheorie&source=bl&ots=dFA9ZZ7iWH&sig=bi2m81m3W9XGL7Qlbevkxhyca80&hl=de&sa=X&ved=0ahUKEwjeveaqg9zOAhUJvxQKHTCjAp8Q6AEIJjAC#v=onepage&q=koch%20dedekindsche%20idealtheorie&f=false)
Da gilt zum Beispiel

[mm](3,1-2\sqrt{-5})(7,1+2\sqrt{-5})=(4+\sqrt{-5})[/mm]   und    [mm](3,1+2\sqrt{-5})(7,1-2\sqrt{-5})=(4-\sqrt{-5})[/mm]   etc.


Liebe Grüße
Fry

        
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Do 25.08.2016
Autor: hippias

Überlege Dir: Sei [mm] $\alpha\in \IQ[i]$ [/mm] mit [mm] $\alpha\not\in [/mm] Q$. Ist dann [mm] $\beta\in \IQ[i]$ [/mm] mit [mm] $\alpha\beta\in \IQ$, [/mm] so existiert [mm] $x\in \IQ$ [/mm] mit [mm] $\beta= x\alpha^{\star}$. [/mm]

Damit gibt es nicht mehr viele Möglichkeiten für die Faktorisierung.

Bezug
                
Bezug
Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Do 25.08.2016
Autor: Fry

Hey hippias,

könntest du das noch etwas ausführen,
Was ist [mm] $a^{\star}$? [/mm] Das multi. Inverse zu a?
Und wieso benutzt du [mm] $\mathbb [/mm] Q(i$)?
Wir befinden uns doch in [mm] $\mathbb Z[\frac{1+\sqrt{39}{i}}{2}]$ [/mm] (bzw. [mm] $\mathbb Q(\sqrt{39}i)$) [/mm]


VG
Fry

Bezug
                        
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Do 25.08.2016
Autor: hippias

Richtig: Es muss [mm] $\IQ[i\sqrt{39}]$ [/mm] heissen; am besten hätte ich gleich [mm] $\IC$ [/mm] geschrieben. Mit [mm] $\alpha^{\star}$ [/mm] meine ich die zu [mm] $\alpha$ [/mm] konjugierte Zahl.

Bezug
                                
Bezug
Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:30 Mo 29.08.2016
Autor: Fry

Hey hippias,
ich komme mit deinem Tipp nicht weiter. Könntest du mir helfen?

Viele Grüße
Fry

Bezug
        
Bezug
Faktorisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:27 Fr 02.09.2016
Autor: Fry

Hat niemand eine Idee oder kann mir mit hippias' Tipp weiterhelfen ?  :/

Bezug
                
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 02.09.2016
Autor: Gonozal_IX

Hiho,

auch wenn Algebra absolut nicht mein Steckenpferd ist, wollen wir mal:

Also klar ist: Gibt es eine nichttriviale Zerlegung in [mm] $\IZ[\omega]$, [/mm] so auch in [mm] $\IQ[\omega] [/mm] = [mm] \IQ[\sqrt{-39}]$. [/mm]

Umgekehrt: Gibt es keine weiteren Zerlegungen in [mm] $\IQ[\sqrt{-39}]$ [/mm] so auch nicht in [mm] $\IZ[\omega]$. [/mm]

Und darauf läuft wohl hippias Tipp hinaus: Betrachtet man nun zwei Elemente [mm] $\alpha,\beta \in \IQ[\sqrt{-39}]$ [/mm] mit [mm] $\alpha \not \in \IQ$ [/mm] aber [mm] $\alpha*\beta \in \IQ$ [/mm] so kann sich [mm] $\beta$ [/mm] nur durch einen [mm] $\IQ$-Faktor [/mm] vom konjugierten von [mm] $\alpha$ [/mm] unterscheiden, d.h. [mm] $\beta [/mm] = [mm] x\alpha^\*$ [/mm] für [mm] $x\in\IQ$. [/mm]

Diese Eigenschaft vererbt sich damit auch auf [mm] $\IZ[\omega]$ [/mm] und somit hast du dort:

$10 [mm] \in \IZ$ [/mm] und du suchst eine nichttriviale Zerlegung [mm] $\alpha*\beta$ [/mm] mit [mm] $\alpha \not \in \IZ$ [/mm] aber [mm] $\alpha*\beta [/mm] = 10 [mm] \in \IZ$. [/mm]

D.h. nach obigem [mm] $\beta [/mm] = x * [mm] \alpha^\*$ [/mm] für ein [mm] $x\in\IZ$ [/mm]

Daraus ergibt sich also: $10 = z [mm] *|\alpha|^2$ [/mm] für [mm] $z\in\IZ$ [/mm]

Und wenn ich mich nicht verrechnet habe, ergibt sich für [mm] $\alpha [/mm] = a + [mm] b\omega, a,b\in\IZ$, [/mm] dass [mm] $|\alpha|^2 [/mm] = [mm] a^2 [/mm] + ab + [mm] 10b^2$. [/mm]

Gruß,
Gono

PS: Da, wie gesagt, Algebra nicht mein Steckenpferd => nur halb beantwortet.

Bezug
                        
Bezug
Faktorisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Di 06.09.2016
Autor: Fry

Vielen Dank für eure Bemühungen! :)
Habt mir weiter geholfen.
Es scheint tatsächlich keine weitere Faktorisierung zu existieren.

Vg
Fry

Bezug
                
Bezug
Faktorisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Fr 02.09.2016
Autor: leduart

Hallo
viel aAgebra kann ich nicht, aber ist nicht [mm] \frac{9+i*\sqrt39}{6} *\frac{9-i*\sqrt(39)}{2}=\frac{120}{12} [/mm]
wenn das ne Lösung ist gibts noch viele, alle bei denen 10| [mm] a^2+39 [/mm]
Gruß ledum

Bezug
                        
Bezug
Faktorisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Sa 03.09.2016
Autor: Gonozal_IX

Hallo leduart,

das ist zwar eine Lösung in [mm] $\IQ[i]$, [/mm] aber keine in [mm] $\IZ[\omega]$. [/mm]

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]