Faktorisierung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 00:08 Mi 02.05.2007 | Autor: | Hansi |
Aufgabe | Zeigen Sie, dass die Zahlen [mm] a^{k}+1 [/mm] keine Kubikzahlen [mm] h^{3} [/mm] sein können, indem Sie [mm] a^{k} [/mm] = [mm] h^{3}-1 [/mm] ansetzen und in Faktoren zerlegen. |
Die Faktorisierung ist ja noch ganz einfach: [mm] a^{k}=(h-1)\*(h^{2}+h+1), [/mm] leider komme ich danach aber überhaupt nicht weiter. Ich muss diesen Ansatz ja irgendwie zum Widerspruch führen, habe aber leider keinen Idee wie das gehen könnte. Kann mir jemand helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:20 Mi 02.05.2007 | Autor: | felixf |
Hallo!
> Zeigen Sie, dass die Zahlen [mm]a^{k}+1[/mm] keine Kubikzahlen [mm]h^{3}[/mm]
> sein können, indem Sie [mm]a^{k}[/mm] = [mm]h^{3}-1[/mm] ansetzen und in
> Faktoren zerlegen.
> Die Faktorisierung ist ja noch ganz einfach:
> [mm]a^{k}=(h-1)\*(h^{2}+h+1),[/mm] leider komme ich danach aber
> überhaupt nicht weiter. Ich muss diesen Ansatz ja irgendwie
> zum Widerspruch führen, habe aber leider keinen Idee wie
> das gehen könnte. Kann mir jemand helfen?
Berechne mal den groessten gemeinsamen Teiler von $h - 1$ und [mm] $h^2 [/mm] + h + 1$. Was fuer Moeglichkeiten gibt es fuer diesen?
Wenn die beiden teilerfremd sind, so muessen beide jeweils eine $k$-te Potenz sein. Damit kommst du vielleicht weiter. Das sollte der einfachere Fall sein, also versuche zuerst diesen zu loesen.
Wenn die beiden nicht teilerfremd sind, so ist der ggT eine Primzahl $p$ (welche in Frage kommen siehst du wenn du den ggT berechnest). Also kannst du $h - 1 = [mm] p^{\ell_1} m_1$ [/mm] und [mm] $h^2 [/mm] + h + 1 = [mm] p^{\ell_2} m_2$ [/mm] mit [mm] $m_1, m_2 \in \IN_{>0}$, [/mm] $p [mm] \nmid m_1, m_2$, $\ell_1, \ell_2 \in \IN_{>0}$ [/mm] schreiben mit [mm] $ggT(m_1, m_2) [/mm] = 1$. Damit muessen [mm] $m_1$ [/mm] und [mm] $m_2$ [/mm] ebenfalls $k$-te Potenzen sein, und [mm] $\ell_1 [/mm] + [mm] \ell_2$ [/mm] muss durch $k$ teilbar sein. Ich vermute mal, das man hier aehnlich wie im ersten Fall weiterkommt.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:38 Mo 07.05.2007 | Autor: | benni |
Es gilt: [mm] h^2+h+1 [/mm] = (h-1)(h+2)+3. Der ggT ist also entweder 3 oder 1.
LG. Benni
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:35 Di 08.05.2007 | Autor: | Hansi |
Hi!
Danke für eure Tipps, bin leider nicht dazu gekommen früher zu antworten. Hab leider nicht wirklich noch was rausbekommen, aber vielleicht bekomme ich auf die Ansätze ja auch noch ein paar Punkte.
Mfg, Hansi
|
|
|
|