matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFaltungsintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Faltungsintegral
Faltungsintegral < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltungsintegral: tipp
Status: (Frage) überfällig Status 
Datum: 18:49 Mi 22.11.2006
Autor: Lee1601

Aufgabe
Gegeben sei die Dichte einer Rechtecksverteilung [mm] R_{(-1,1)}: [/mm]

r(x) := [mm] r_{-1,1}(x) [/mm] = 1/2 * [mm] 1_{(-1,1)}(x) [/mm]

Berechnen sie das sogenannte Faltungsintegral:

[mm] \integral_{-\infty}^{\infty}{r(x-y) * r(y) dy} [/mm]

(Beachte: [mm] \integral_{\-infty}^{infty}{f(x)*1_{(a,b)} dx} [/mm]
= [mm] \integral_{a}^{b}{f(x) dx} [/mm] )


hallo!

ich bins nochmal!

wie soll man hier das integral ausrechnen?
wenn man die funktion einsetzt steht doch da:

[mm] \integral_{-\infty}^{infty}{1/2 * 1_{(-1,1)} (x-y) *1/2 * 1_{(-1,1)} (y) dy} [/mm]

und wenn ich jetzt die grenzen rausziehe bleibt doch da 1/2(x-y) stehen bzw 1/2 (y)
wie geht das??

danke!

lg lee

        
Bezug
Faltungsintegral: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mi 22.11.2006
Autor: luis52

Hallo Lee1601,

das Integral kannst du deutlich vereinfachen, indem du ausnutzt, dass
gilt $r(y)=0$ ausserhalb des Intervalls $(-1,1)$, so dass

[mm] $R(x)=\frac{1}{2}\integral_{-1}^{+1} r(x-y)\, [/mm] dy$

auszurechnen ist. Fuer den Rest musst du dir ueberlegen, fuer welche
Werte von $x$ der Integrand nicht verschwindet.

hth
                  

Bezug
        
Bezug
Faltungsintegral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 24.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]