matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenFehler in Wikipedia?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Fehler in Wikipedia?
Fehler in Wikipedia? < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler in Wikipedia?: affiner Unterraum
Status: (Frage) beantwortet Status 
Datum: 19:00 Sa 03.01.2009
Autor: hohle_siNuss

ich schreibe gerade an meiner Facharbeit und bin auf einen Eintrag in Wikipedia gestoßen (ja, ich weiß ich sollte das für die Facharbeit nicht tun, ist aber meist für die Grundlagen das verständlichste).
Der Eintrag lautet:

"Da auch v = 0 gewählt werden kann, ist jeder Untervektorraum gleichzeitig affiner Unterraum. Ein affiner Unterraum ist genau dann ein Untervektorraum, wenn er die Null enthält.

Der Lösungsraum eines inhomogenen linearen Gleichungssystems in n Variablen über dem Körper K ist ein affiner Unterraum von [mm] K^n." [/mm]
( http://de.wikipedia.org/wiki/Affiner_Unterraum )

Soweit ich das nach Lektüre einiger anderer Quellen beurteilen kann, ist das doch aber schlichtweg falsch (ich meine den letzten Satz), weil nämlich die Lösungsmenge eines inhomogenen Gleichungssystems genau nicht den Nullvektor enthält, das würde ja zu einem Widerspruch führen, da mindestens eine Koordinate des Spaltenvektors der rechten Seite ungleich 0 sein muss, sonst ist das LGS ja homogen.... oder nicht?

lg
die hohle Nuss :D

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehler in Wikipedia?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Sa 03.01.2009
Autor: Merle23


> "Da auch v = 0 gewählt werden kann, ist jeder
> Untervektorraum gleichzeitig affiner Unterraum. Ein affiner
> Unterraum ist genau dann ein Untervektorraum, wenn er die
> Null enthält.
>  
> Der Lösungsraum eines inhomogenen linearen
> Gleichungssystems in n Variablen über dem Körper K ist ein
> affiner Unterraum von [mm]K^n[/mm]."
>  ( http://de.wikipedia.org/wiki/Affiner_Unterraum )
>  
> Soweit ich das nach Lektüre einiger anderer Quellen
> beurteilen kann, ist das doch aber schlichtweg falsch (ich
> meine den letzten Satz), weil nämlich die Lösungsmenge
> eines inhomogenen Gleichungssystems genau nicht den
> Nullvektor enthält, das würde ja zu einem Widerspruch
> führen, da mindestens eine Koordinate des Spaltenvektors
> der rechten Seite ungleich 0 sein muss, sonst ist das LGS
> ja homogen.... oder nicht?

Die Lösungsmenge eines inhomogenen GLS enthält nicht die Null, das ist richtig.

Das behauptet der andere Satz aber auch nicht. Er sagt bloß, dass wenn der affine Unterraum die Null enthält, dann ist der affine Unterraum auch ein "echter" Unterraum.

Daraus folgt insgesamt, dass die Lösungsmenge eines inhomogenen GLS kein "echter" Unterraum des [mm] K^n [/mm] ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]