Fehlerabschätzung für exp(2) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:00 Sa 17.01.2009 | Autor: | Move |
Aufgabe | a) Untersuchen Sie, wie viele Terme der Exponentialreihe [mm] \sum_{k=0}^{\infty}\frac{x^{k}}{k!} [/mm] benötigt werden, um den Wert von exp(2) mit einer absoluten Genauigkeit von 3 Stellen zu erhalten; d.h. bestimmen Sie, ab welchem [mm] n\in\IN
[/mm]
[mm] |exp(2)-\sum_{k=0}^{n}\frac{2^{k}}{k!}|\le 5*10^{-4} [/mm]
gilt.
b) Hat es Vorteile, bzgl. der Zahl der auszuführenden Multiplikationen anstatt von exp(2) nur exp(1) zu berechnen und das Ergebnis dann zu quadrieren?
Dabei wird -nachdem die Anzahl n der benötigten Terme bestimmt wurde- ein Horner-Schema zur Berechnung der entsprechenden n-ten Partialsumme genutzt, d.h. man verwendet
[mm] \sum_{k=0}^{\infty}\frac{x^{k}}{k!}=(...(((\frac{x}{n}+1)\frac{x}{n-1}+1)\frac{x}{n-2}+1)...)\frac{x}{1}+1 [/mm] |
Ich weiß nicht genau, was ich da eigentlich machen soll. Natürlich könnte man einfach durch Einsetzen auf das Ergebnis kommen. Aber das ist glaube ich nicht Sinn der Aufgabe.
Ich habe außerdem versucht mit [mm] |\sum_{k=0}^{\infty}\frac{x^{k}}{k!}-\sum_{k=n+1}^{\infty}\frac{x^{k}}{k!}|\le\sum_{k=0}^{n}\frac{x^{k}}{k!} [/mm] zu arbeiten. Da müsste man dann eine Abschätzung für die rechte Seite finden, aber das kriege ich nicht hin.
Es wäre nett, wenn mir jemand weiterhelfen könnte!
Vielen Dank schon im Voraus und ein schönes Wochenende,
Move
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:07 Sa 17.01.2009 | Autor: | rainerS |
Hallo Move!
> a) Untersuchen Sie, wie viele Terme der Exponentialreihe
> [mm]\sum_{k=0}^{\infty}\frac{x^{k}}{k!}[/mm] benötigt werden, um den
> Wert von exp(2) mit einer absoluten Genauigkeit von 3
> Stellen zu erhalten; d.h. bestimmen Sie, ab welchem
> [mm]n\in\IN[/mm]
> [mm]|exp(2)-\sum_{k=0}^{n}\frac{2^{k}}{k!}|\le 5*10^{-4}[/mm]
> gilt.
>
> b) Hat es Vorteile, bzgl. der Zahl der auszuführenden
> Multiplikationen anstatt von exp(2) nur exp(1) zu berechnen
> und das Ergebnis dann zu quadrieren?
>
> Dabei wird -nachdem die Anzahl n der benötigten Terme
> bestimmt wurde- ein Horner-Schema zur Berechnung der
> entsprechenden n-ten Partialsumme genutzt, d.h. man
> verwendet
>
> [mm]\sum_{k=0}^{\infty}\frac{x^{k}}{k!}=(...(((\frac{x}{n}+1)\frac{x}{n-1}+1)\frac{x}{n-2}+1)...)\frac{x}{1}+1[/mm]
> Ich weiß nicht genau, was ich da eigentlich machen soll.
> Natürlich könnte man einfach durch Einsetzen auf das
> Ergebnis kommen. Aber das ist glaube ich nicht Sinn der
> Aufgabe.
> Ich habe außerdem versucht mit
> [mm]|\sum_{k=0}^{\infty}\frac{x^{k}}{k!}-\sum_{k=n+1}^{\infty}\frac{x^{k}}{k!}|\le\sum_{k=0}^{n}\frac{x^{k}}{k!}[/mm]
> zu arbeiten. Da müsste man dann eine Abschätzung für die
> rechte Seite finden, aber das kriege ich nicht hin.
Tipp: die Exponentialreihe ist die Taylorreihe der Exponentialfunktion. Da gibt's Abschätzungen für das Restglied.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:09 Sa 17.01.2009 | Autor: | Move |
Danke für die schnelle Antwort. Leider haben wir Taylorreihen noch nicht gemacht. Fällt dir vielleicht eine andere Abschätzung ein?
|
|
|
|
|
Hallo!
Ich kenne folgende Abschätzung für das Restglied:
[mm] e^x=\summe_{n=0}^{N}\frac{x^n}{n!}+R_{N+1}(x)
[/mm]
[mm] |R_{N+1}(x)|\le2*\frac{|x|^{N+1}}{(N+1)!} [/mm] für alle x mit [mm] |x|\le 1+\frac{N}{2}
[/mm]
Hoffe es hilft dir!
Gruß
Angelika
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:06 So 18.01.2009 | Autor: | Move |
Hallo,
Danke für den Tipp.
Kannst du bitte kurz erklären, wo die 2 in der Abschätzung herkommt? Es müssten ja alle Reihenglieder nach dem N+1ten Glied kleiner als dieser Ausdruck sein, aber ich sehe nicht, wieso das so ist.
|
|
|
|
|
Hallo!
Die Abschätzung stammt aus dem Forster.Das Restglied ist höchstens so groß wie das 2fache vom 1. nich berücksichtigten Reihenglied.Bei N wird die Reihe abgebrochen.
Der Beiweis funktioniert mithilfe der geometrischen Reihe:
[mm] |R_{N+1}(x)|\le \summe_{n=N+1}^{\infty}\frac{|x|^n}{n!}=\frac{|x|^{N+1}}{(N+1)!}(1+\frac{|x|}{N+2}+\frac{|x|^2}{(N+2)(N+3)}+...)\le\frac{|x|^{N+1}}{(N+1)!}(1+\frac{|x|}{N+1}+(\frac{|x|}{N+1})^2+ (\frac{|x|}{N+1})^3...)
[/mm]
Der Ausdruck in der Klammer konvergiert gegen 2.
Gruß
Angelika
|
|
|
|