matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikFehlerfortpflanzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Fehlerfortpflanzung
Fehlerfortpflanzung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerfortpflanzung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:22 Do 16.08.2007
Autor: Hydrazin

hallo!

Ich habe gleich zwei Probleme:
Zum einen habe ich Funktionswerte f(x) mit einer Standardabweichung.
Diese Funktionswerte (Messwerte) werden nun reziprok aufgetragen, also 1/f(x) gegen konstante x-Werte, diese Funktion ist linear , z. B. k*x+d

Wie kann ich nun die Standardabweichung "mitnehmen"?
Meine Anwendung der Gauss´schen Fehlerfortpflanzung liefert "merkwürdige" Werte, z. B.
f(x)=1000 [mm] \pm [/mm] 10
dann muss man doch eine Taylorreihenentwicklung machen, die so aussieht: 1. Ableitung der linearen Funktion liefert den k-Wert, bei z. B.
0.0002*x+d
muss man für den Gauss´

0.0002 * "die zu transformierende Größe"
rechnen (weil die höheren Glieder ja 0 sind), oder? Bei mir kommt dann 0.002 raus. Dies ist aber größer als der 1/f(x)-Wert, der dann ja 0.001 ist...
Hab ich da irgendwas falsch gemacht (bzw. was?)?

Mein zweites, größeres Problem ist folgendes:
Aus z. B. acht 1/f(x)-Werten bekomme ich dann die entsprechende lineare Funktion, k*x+d raus, wobei k für mich die entsprechende interessante Größe ist. Nun möchte ich für die Steigung gerne eine Standardabweichung oder eine entsprechend andere statistische Größe angeben -> wie kann ich das machen? Könnte ich für deren Varianz einfach

[mm] \bruch{1}{N-1}*\summe_{i=1}^{n}(x_{i}-\overline{x})^{2} [/mm]

rechnen, wobei xi mein 1/f(x)-Wert ist und [mm] \overline{x} [/mm] mein gefitteter und aus der Gleichung errechneter Wert ist...?

Ich benötige diese Informationen für eine Facharbeit, aber eigentlich geht es mir darum, nicht einfach nur Daten aus dem Origin abzuschreiben, sondern zumindest zu wissen, wie diese Daten verarbeitet werden...





        
Bezug
Fehlerfortpflanzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Do 16.08.2007
Autor: Hydrazin

jetzt hab ich doch ganz vergessen, mich mal im vorhinein zu bedanken...
somit: vielen Dank im Voraus und liebe Grüße...



Bezug
        
Bezug
Fehlerfortpflanzung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:08 Fr 17.08.2007
Autor: rainerS

Hallo!
>  
> Ich habe gleich zwei Probleme:
>  Zum einen habe ich Funktionswerte f(x) mit einer
> Standardabweichung.
> Diese Funktionswerte (Messwerte) werden nun reziprok
> aufgetragen, also 1/f(x) gegen konstante x-Werte, diese
> Funktion ist linear , z. B. k*x+d
>  
> Wie kann ich nun die Standardabweichung "mitnehmen"?

Die Fehlerfortplanzung ist eine lineare Approximation, also Abbruch der Taylorreihe nach dem linearen Glied.
Hast du einen Messwert [mm]y= y_0\pm\Delta y[/mm] und willst [mm]z=1/y[/mm] auftragen,so entwickelst du [mm]1/y[/mm] um [mm]y_0[/mm]:
[mm]z=\bruch{1}{y} = \bruch{1}{y_0} - \bruch{1}{y_0^2}(y-y_0) + \dots \approx \bruch{1}{y_0}\left(1 \pm \bruch{\Delta y}{y_0}\right) = z_0 \pm \Delta z[/mm].
Wenn du das durch [mm]z_0[/mm] teilst, siehst du, dass der relative Fehler von z gleich dem relativen Fehler von y ist. Das ist bei Produkt- und Quotientenbildung immer so.

> Meine Anwendung der Gauss´schen Fehlerfortpflanzung liefert
> "merkwürdige" Werte, z. B.
>  f(x)=1000 [mm]\pm[/mm] 10

Das ist ein relativer Fehler von einem Prozent, also ist [mm]1/f(x) = 0.001 \pm 0.00001[/mm].

> Mein zweites, größeres Problem ist folgendes:
>  Aus z. B. acht 1/f(x)-Werten bekomme ich dann die
> entsprechende lineare Funktion, k*x+d raus, wobei k für
> mich die entsprechende interessante Größe ist. Nun möchte
> ich für die Steigung gerne eine Standardabweichung oder
> eine entsprechend andere statistische Größe angeben -> wie
> kann ich das machen? Könnte ich für deren Varianz einfach
>  
> [mm]\bruch{1}{N-1}*\summe_{i=1}^{n}(x_{i}-\overline{x})^{2}[/mm]
>
> rechnen, wobei xi mein 1/f(x)-Wert ist und [mm]\overline{x}[/mm]
> mein gefitteter und aus der Gleichung errechneter Wert
> ist...?

Schau dir mal diese []Erklärung der linearen Regression an. Die ist zwar etwas länglich, gibt aber auf der vierten Seite die Standardabweichung für Steigung und Achsenabschnitt an.

Grüße

Bezug
                
Bezug
Fehlerfortpflanzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:35 Fr 17.08.2007
Autor: Hydrazin

Vielen Dank!

Mit den Erklärungen ist´s mir total klar... Und vollkommen unverständlich, warum ich da so lange herumgedoktort habe :)

Auf jeden Fall vielen, vielen Dank & lg




Bezug
        
Bezug
Fehlerfortpflanzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 24.08.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]