matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieFermatsche (prim)zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Fermatsche (prim)zahlen
Fermatsche (prim)zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fermatsche (prim)zahlen: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:30 Mi 13.12.2006
Autor: Arnbert

Guten Abend!Habe folgendes Problem,bei dem ich bitte Hilfe benötige. [mm] F_{n} [/mm] = [mm] 2^{2^{n}} [/mm] +1 mit n aus [mm] \IN_{0} [/mm] soll die n-te Fermatsche PrimZahl sein.
Wie zeige ich jetzt, dass wenn p Primteiler von [mm] F_{n} [/mm] , so gibt es ein [mm] k\in \IN [/mm] mit [mm] p=k*2^{(n+1)}+1. [/mm]

ich weiß z.B. dass erstens: [mm] 2^{2^{n+1}}\equiv [/mm] 1 mod p und zweitens: e minimal [mm] \Rightarrow e|2^{n+1} [/mm]
mit [mm] 2^{e}\equiv [/mm] 1 mod p für e>0 und e minimal.
Kann ich das hier nicht schon draus folgern? wie genau?

Danke schon mal.
gruß arnbert
  

        
Bezug
Fermatsche (prim)zahlen: Aufgabenstellung?
Status: (Antwort) fertig Status 
Datum: 15:10 Do 14.12.2006
Autor: zahlenspieler

Hallo Arnbert,
> Guten Abend!Habe folgendes Problem,bei dem ich bitte Hilfe
> benötige. [mm]F_{n}[/mm] = [mm]2^{2^{n}}[/mm] +1 mit n aus [mm]\IN_{0}[/mm] soll die
> n-te Fermatsche PrimZahl sein.

Tja, so geht's wohl nicht :-(: Schon Euler bewies, daß [mm] $F_5$ [/mm] keine Primzahl ist. Und zumindest GAP sagt mir, daß auch [mm] $F_6,F_8$ [/mm] keine sind.

>  Wie zeige ich jetzt, dass wenn p Primteiler von [mm]F_{n}[/mm] , so
> gibt es ein [mm]k\in \IN[/mm] mit [mm]p=k*2^{(n+1)}+1.[/mm]

Wie das? Einerseits soll $p$ Primteiler sein, aber andererseits soll $p$ einen nichttrivialen Teiler haben?
Und bis jetzt hab ich noch kein zusammengesetztes [mm] $F_n$ [/mm] gefunden, das einen Teiler der Form [mm] $2^{m}+1$ [/mm] hat.
Eine rekursive Definition von [mm] $F_n$:[/mm]  [mm]F_0=3, F_{n}=\prod_{i=1}^{n-1} F_{i} +2\quad \text{für $n>0$}[/mm]. Dann kann aber ein Primteiler $p$ von [mm] $F_{n}$ [/mm] nicht Teiler von [mm] $F_{n+1}$ [/mm] sein.
Mfg
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]