matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieFilter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Filter
Filter < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Filter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Mo 04.07.2005
Autor: Wurzelpi

Hallo zusammen!

Es sei X eine unendliche Menge, F ein Filter auf X und [mm]G:=\left\{B\subset X;C_XB endlich\right\}[/mm], also die Menge aller B, deren Komplement endlich ist.

Zu zeigen ist die Äquivalenz folgender Aussagen:

(i) [mm]G\subset F[/mm]
(ii) [mm]\cap_{A\in F} A=\emptyset[/mm]

Von (i) nach (ii) habe ich mühelos zeigen können.
Jedoch bereitet mir der Weg von (ii) nach (i) Probleme.
Bislang habe ich folgendes versucht.
- Ich habe angenommen, dass G keine Teilmenge von F ist, und versucht, dass zum Widerspruch zu führen. Leider ohne Erfolg.
- Ferner habe ich erst einmal festgestellt, dass G auch ein Filter ist und somit auch eine Filterbasis. Aber finde keine Beziehung zu F.

Vielleicht hat jemand noch eine Idee, wie ich zum Ziel kommen kann.

        
Bezug
Filter: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 06.07.2005
Autor: Gnometech

Grüße!

Also, bevor ich anfange schreibe ich erstmal, was meiner Meinung nach ein Filter ist - wenn das nicht eurer Def. entspricht, dann ist der Beweis hinfällig. ;-)

Also, zu einer Menge $X$ ist ein Filter $F$ ein System von Teilmengen, für das gilt:

$X [mm] \in [/mm] F$
[mm] $\emptyset \notin [/mm] F$
$A,B [mm] \in [/mm] F [mm] \Rightarrow [/mm] A [mm] \cap [/mm] B [mm] \in [/mm] F$
$A [mm] \in [/mm] F, B [mm] \supseteq [/mm] A [mm] \Rightarrow [/mm] B [mm] \in [/mm] F$

Aus den Eigenschaften 2 und 3 folgt insbesondere, dass nur entweder eine Menge oder ihr Komplement in dem Filter sein können, da ihr Schnitt ja leer ist. Insbesondere sagt Dir Bedingung i) aus der Aufgabe, dass der Filter keine endliche Mengen enthalten kann.

Also, gefragt war ii) [mm] $\Rightarrow$ [/mm] i).

Zu $x [mm] \in [/mm] X$ bezeichne ich mit [mm] $C_x$ [/mm] das Komplement von [mm] $\{x\}$ [/mm] in $X$, also [mm] $C_x [/mm] = X [mm] \backslash \{ x \}$. [/mm] Es reicht zu zeigen, dass [mm] $C_x \in [/mm] F$ für jedes $x$, da sich jede Menge aus $G$ als Schnitt endlich vieler solcher Mengen darstellen lässt.

Sei also $x [mm] \in [/mm] X$ beliebig. Dann gibt es nach ii) ein $A [mm] \in [/mm] F$ mit $x [mm] \notin [/mm] A$. Daraus aber folgt $A [mm] \subseteq C_x$ [/mm] und damit ist nach der Filtereigenschaft [mm] $C_x \in [/mm] F$. Und das wars auch schon. :-)

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]