matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenFixgeraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Abbildungen und Matrizen" - Fixgeraden
Fixgeraden < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixgeraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Sa 26.09.2009
Autor: mathemania

Hallo liebe Forumfreunde, wir haben in der Schule ein neues Thema es geht um Abbildungn !! Hierzu habe ich eine Aufgabe bei der ich leider nicht weiter komme :
Untersuchen Sie, ob die Gerade g Fixgerade der affinen Abbildung ist.



a)  [mm] \vec{x}=\vektor{-2 \\ 5} [/mm] + [mm] t\vektor{-1 \\ 4} [/mm] ;  [mm] \vec{x'}= \pmat{ 2 & 1 \\ 4 & -1 } \times \vec{x}+ \vektor{0 \\ 6} [/mm]

Leider fehlt mir der Ansatz ich freue mich auf eure Antworten

Gruß Mathemania

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 26.09.2009
Autor: M.Rex

Hallo

Die Gerade g kann man ja auch "in einem Vektor" schreiben, also:

[mm] g:\vec{x}=\vektor{-2\\5}+t*\vektor{-1\\4}=\vektor{-2-t\\5+4t} [/mm]

Und jetzt berechne mal die Bildgerade [mm] g'=\vec{x'} [/mm] von [mm] g:\vec{x}=\vektor{-2-t\\5+4t}, [/mm] mit

[mm] \vec{x'}=\pmat{2&1\\4&-1}*\vektor{-2-t\\5+4t}+\vektor{0\\6} [/mm]

Gilt jetzt g=g'? Dann wäre es eine Fixgerade.

Marius

Bezug
                
Bezug
Fixgeraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:37 Sa 26.09.2009
Autor: mathegenie_90

hallo Forumfreunde,

> Hallo
>  
> Die Gerade g kann man ja auch "in einem Vektor" schreiben,
> also:
>  
> [mm]g:\vec{x}=\vektor{-2\\5}+t*\vektor{-1\\4}=\vektor{-2-t\\5+4t}[/mm]
>  
> Und jetzt berechne mal die Bildgerade [mm]g'=\vec{x'}[/mm] von
> [mm]g:\vec{x}=\vektor{-2-t\\5+4t},[/mm] mit
>  
> [mm]\vec{x'}=\pmat{2&1\\4&-1}*\vektor{-2-t\\5+4t}+\vektor{0\\6}[/mm]

Wie will man das denn hier ausmultiplizieren?Das verstehe ich nicht so ganz.Also ich habe grad das gleiche Thema,deshalb wüsste ich das auch mal gern.Ein zwischenschritt wäre hilfreich.
Würd mich über jede hilfe freuen.
Vielen Dank im Voraus
MfG
Danyal

>  
> Gilt jetzt g=g'? Dann wäre es eine Fixgerade.
>  
> Marius


Bezug
                        
Bezug
Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 26.09.2009
Autor: angela.h.b.


> [mm]\vec{x'}=\green{\pmat{2&1\\4&-1}}*\blue{\vektor{-2-t\\5+4t}}+\vektor{0\\6}[/mm]
>  
> Wie will man das denn hier ausmultiplizieren?Das verstehe
> ich nicht so ganz.

Hallo,

das Grüne ist eine 2x2- Matrix, das Blaue ein Spaltenvektor mit zwei Einträgen  (bzw. eine 2x1-Matrix).

Multipliziert wird hier wie bei jeder Matrixmultiplikation: "Zeile mal Spalte".

Also ist das Ergebnis von [mm] \green{\pmat{2&1\\4&-1}}*\blue{\vektor{-2-t\\5+4t}} [/mm]

[mm] =\vektor{2*(-2-t) + 1*(5+4t)\\4*(-2-t) - 1*(5+4t)}. [/mm]

Gruß v. Angela



Bezug
                                
Bezug
Fixgeraden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:28 Sa 26.09.2009
Autor: mathegenie_90

Vielen Dank für die hilfe.

Ich habe folgendes rausbekommen:

[mm] g'=\vektor{2*(-2-t) + 1*(5+4t)\\4*(-2-t) - 1*(5+4t)} [/mm] + [mm] \vektor{0 \\ 6} [/mm]

[mm] g'=\pmat{ 1 & 2t \\ -13 & -8t } [/mm] + [mm] \vektor{0 \\ 6} [/mm]

Also lautet der Antwortsatz:
Die Gerade g ist keine Fixgerade der affinen Abbildung.

Bitte eventuell um Korrektur.
Vielen Dank im Voraus.
MfG
Danyal

Bezug
                                        
Bezug
Fixgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Sa 26.09.2009
Autor: angela.h.b.


> Vielen Dank für die hilfe.
>  
> Ich habe folgendes rausbekommen:
>  
> [mm]g'=\vektor{2*(-2-t) + 1*(5+4t)\\4*(-2-t) - 1*(5+4t)}[/mm] +
> [mm]\vektor{0 \\ 6}[/mm]
>  
> [mm]g'=\pmat{ 1 & 2t \\ -13 & -8t }[/mm] + [mm]\vektor{0 \\ 6}[/mm]

Hallo,

wahrscheinlich nur ein Schreibfehler:

man bekommt

[mm]g'=\pmat{ 1 \red{+} 2t \\ -13 \red{-} -8t }[/mm] + [mm]\vektor{0 \\ 6}[/mm]

>  
> Also lautet der Antwortsatz:
>  Die Gerade g ist keine Fixgerade der affinen Abbildung.

Ich kann das so noch nicht sehen.

Ich würde jetzt erstmal das Obige in die Form  Stützvektor +Parameter*Richtungsvektor bringen und dann weiterüberlegen, also Richtungavektoren vergleichen usw.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]