matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenFläche Maximal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Trigonometrische Funktionen" - Fläche Maximal
Fläche Maximal < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche Maximal: Extremwertaufgabe für Fläche
Status: (Frage) beantwortet Status 
Datum: 15:46 So 11.03.2007
Autor: Blaub33r3

Aufgabe
Aus vier gleich breiten Brettern soll eine oben offene Rinne hergestellt werden, so dass zwei ihrer Wände parallel sind.
Wie groß ist der Winkel Alpha zwischen den beiden anderen Wänden zu wählen, damit das Fassungsvermögen der Rinne möglichst groß wird?

Hi Leute...
Ich finde einfach keinen Ansatz, bzw wie man das anfängt zurechnen? Was muss ich beachten, bzw was soll ich mich fragen? Das Gebilde is ein Rechteck mit einem untergesetzten Dreieck..? Der Winkel gegenüber der hypatenuse ist gesucht..

Gruss Daniel

        
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 So 11.03.2007
Autor: Daox

Hi!
Das werden ja vermutlich alles lineare Gleichungen sein. Wenn man das im Querschnitt betrachtet würde das ja in etwa so aussehen:

[mm] \bigcup [/mm]

nur, dass es unten jeweils spitz zuläuft. Die Höhe der parallelen Bretter ist fest, der Abstand aber abhängig vom Winkel. Reicht dir da der Hinweis, dass die Steigung einer Geraden dem Tangens von Winkel entspricht zwischen Graph und x-Achse?

Bezug
                
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 So 11.03.2007
Autor: Blaub33r3

Hi sry bin gerade ausversehn eingeschlafen...
ähm ja ich kann mir das jetz vorstellen...
aber wieso sollen das alles linearefunktionen sein?
und dein 2ten tip hab ich auch keine ahnung von...
hab so eine aufgabe einfach nur nie gerechnet und mir fehlen, denke ich, einfach die Basics um sowas zulösen!

Paar Erklärungen vllt, dann würde ich das rechnen können!
Ist der Querschnitt von der Fläche diesers "Körpers" abhänig?

Gruss Daniel

Bezug
                        
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 11.03.2007
Autor: hase-hh

moin daniel,

im prinzip richtig,

ein rechteck mit untergesetztem gleichschenkligem dreieck!

und selbstverständlich ist sowohl der flächeninhalt des dreiecks als auch der flächeninhalt des rechtecks abhängig vom winkel  an der spitze des dreiecks. (denn das beeinflusst ja die länge der grundseite des dreiecks). übrigens hyp o tenuse  ist meines wissens nur ein ausdruck für rechtwinklige dreiecke...

damit wars das doch schon.

a ist die breite des brettes...


fläche rechteck = a *x  

fläche dreieck = 1/2 g* h = 1/2 x * h

[mm] h^2 [/mm] = [mm] a^2 [/mm] - [mm] (x/2)^2 [/mm]


und dann zielfunktion aufstellen und maximum bestimmen.

:-)



Bezug
                                
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 So 11.03.2007
Autor: Blaub33r3

Hallo^^
a=die breite der bretter,sagst du aber auch zugleich die grundseite des dreiecks, die du aber wieder x bennennst??
Und woher bekommst du das [mm] a^2=b^2+c^2 [/mm] .. Das is doch kein rechtwinkeliges Dreieck? hmm
Und wie mach ich die Zielfunktion abhängig von Winkel(bzw eher Bogenmass)?

Gruss Daniel

Bezug
                                        
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 So 11.03.2007
Autor: M.Rex

Hallo.

Wenn du das Dreieck halbierst, hast du zwei Rechtwinklige Dreiecke.
Dann kannst du mit dem Satz des Pythagoras arbeiten.

Marius


Bezug
                        
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 11.03.2007
Autor: M.Rex

Hallo.

Da du den Extremen Öffnungswinkel [mm] \alpha [/mm] suchst, kannst du auch direkt den Tangens nehmen:

[mm] tan(\bruch{\alpha}{2})=\bruch{\bruch{1}{2}g_{Dreieck}}{h_{Dreieck}} [/mm]

Marius

Bezug
                                
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 So 11.03.2007
Autor: Blaub33r3

Alles klar, hab das jetz verstanden warum man tangens anwenden muss... Nur wie bestimme ich die eigentliche Zielfunktion jetz mit all diesen Information über Fläche und Winkel?

LG Daniel

Ich bin jetz nur soweit
[mm] Zielfunktion=\bruch{x}{2}*a+\bruch{x/2*h}{2} [/mm]
Soll ich jetz x/2 durch [mm] tan(\alpha/2) [/mm] ersetzen?
Aber die Funktion ist irgendwie NIE nur vom Winkelabhängig sondern auch von der Höhe des Dreiecks.

Bezug
                                        
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 So 11.03.2007
Autor: M.Rex

Hallo

Ich nenne die Länge der Bretter mal l.

Du hast das Rechteck mit der Fläche.

[mm] g_{Dreieck}*l [/mm]

Und die Fläche des Dreiecks ist:

[mm] \bruch{g_{Dreieck}*h_{Dreieck}}{2} [/mm]

Also:

[mm] A(g;h)=\bruch{g_{Dreieck}*h_{Dreieck}}{2}+g_{Dreieck}*l [/mm]

Und jetzt gilt:

[mm] \bruch{1}{4}g²+h²=l² [/mm]
Also: [mm] h=\wurzel{l²-0,25g²} [/mm]

Also:

[mm] A(g)=\bruch{g*\wurzel{l²-0,25g²}}{2}+gl [/mm]
[mm] =\bruch{\wurzel{-0,25g^{4}-g²l²}}{2}+gl [/mm]

Wenn du g und h bestimmt hast, kannst du dann dem Winkel mit dem Tangens berechnen.

Marius

Marius

Bezug
                                                
Bezug
Fläche Maximal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 So 11.03.2007
Autor: Blaub33r3

Okay, ähm sry das sollte hier doch keine Frage werden!!^^


Bezug
                                                        
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 So 11.03.2007
Autor: Blaub33r3

Hey, muss ich beim Ableiten vom 2ten Summand, Produkt + Kettenregel anwenden,theoretisch? Weil ich nicht wusste wie du beim Zähler das g in die Wurzel schieben konntest^^!

Gruß

Bezug
                                                                
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 11.03.2007
Autor: Steffi21

Hallo,

g ziehst du als [mm] g^{2} [/mm] in die Wurzel,
deine Funktion lautet ja:

[mm] A(g)=gl+\bruch{1}{2}\wurzel{l^{2}*g^{2}-0,25*g^{4}} [/mm] M.Rex hatte ein Vorzeichen - zuviel

[mm] A'(g)=l+\bruch{2*g*l^{2}-g^{3}}{4\wurzel{l^{2}*g^{2}-0,25*g^{4}}} [/mm] bei der Wurzel benutzt du zur Ableitung die Kettenregel, äußere Ableitung mal innere ableitung,

Steffi



Bezug
                                                                        
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:45 So 11.03.2007
Autor: Blaub33r3

Hey,

meine eigentlich Frage war wieso
[mm] A(g)=\bruch{g\cdot{}\wurzel{l²-0,25g²}}{2}+gl [/mm]
das hier ist?
[mm] =\bruch{\wurzel{-0,25g^{4}-g²l²}}{2}+gl [/mm] $
zwischen schritt würde mir sehr helfen..

Also wie kommt das g in die Wurzel^^?

Gute Nacht, Daniel

Bezug
                                                                                
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 So 11.03.2007
Autor: Steffi21

Hallo,

M.Rex hatte ein Vorzeichen "-" zuviel,

[mm] g*\wurzel{l^{2}-0,25*g^{2}} [/mm]

du ziehst g als [mm] g^{2} [/mm] unter die Wurzel,

[mm] \wurzel{l^{2}*g^{2}-0,25*g^{4}} [/mm]

Steffi



Bezug
                                                                        
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:58 So 11.03.2007
Autor: Blaub33r3

ähm, wie kann ich

[mm] 0=l+2gl^2-g^3 [/mm]   nach g bitte auflösen?

steh total aufm schlauch irgendwie heut :>

Gut Nacht^^

Bezug
                                                                                
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 So 11.03.2007
Autor: Steffi21

Hallo,

du hast es dir leider etwas zu einfach gemacht:

[mm] A'(g)=l+\bruch{2*g*l^{2}-g^{3}}{4\wurzel{l^{2}*g^{2}-0,25*g^{4}}} [/mm]

[mm] 0=l+\bruch{2*g*l^{2}-g^{3}}{4\wurzel{l^{2}*g^{2}-0,25*g^{4}}} [/mm] du mußt leider den Nenner mitnehmen

[mm] -l=\bruch{2*g*l^{2}-g^{3}}{4\wurzel{l^{2}*g^{2}-0,25*g^{4}}} [/mm] Gleichung quadrieren

[mm] l^{2}=\bruch{(2*g*l^{2}-g^{3})^{2}}{16*(l^{2}*g^{2}-0,25*g^{4})} [/mm]

[mm] l^{2}=\bruch{4*g^{2}*l^{4}-4*g^{4}*l^{2}+g^{6}}{16*l^{2}*g^{2}-4*g^{4}} [/mm]

[mm] l^{2}=\bruch{4*l^{4}-4*g^{2}*l^{2}+g^{4}}{16*l^{2}-4*g^{2}} [/mm] du kürzt [mm] g^{2} [/mm]

[mm] 16*l^{4}-4*g^{2}*l^{2}=4*l^{4}-4*g^{2}*l^{2}+g^{4} [/mm]

[mm] 0=g^{4}-12*l^{4} [/mm]

[mm] g=\wurzel{\wurzel{12}}l [/mm]


Steffi

Bezug
                                                                                        
Bezug
Fläche Maximal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 So 11.03.2007
Autor: Blaub33r3

Okay vielen Dank aufjedenfall^^

Hab gerade mal die Ableitung plotten lassen, ... die sieht ja ziemlich crazy aus...irgendwie hat die auch garkeinen hochpunkt! irgendwas stimmt nicht :>
aber is auch nich so schlimm, danke aufjedenfall^^

Gute Nacht, Daniel

Bezug
                                                                                                
Bezug
Fläche Maximal: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mo 12.03.2007
Autor: angela.h.b.


>
> Hab gerade mal die Ableitung plotten lassen, ... die sieht
> ja ziemlich crazy aus...irgendwie hat die auch garkeinen
> hochpunkt! irgendwas stimmt nicht :>

Hallo,

ich habe das hier alles zugegebenermaßen nur überflogen, aber:

Daß die Ableitung einen Hochpunkt hat, hat doch niemand behauptet, oder?

Es war doch der Hochpunkt der Funktion gesucht, also zunächst die Stelle, wo die erste Ableitung der Funktion =0 ist.

Ist die Nullstelle der Ableitung in Deinem Plot denn entsprechend Deiner Berechnung?
Ist die Nullstelle der berechneten Ableitung da, wo die Funktion ihren Hochpunkt hat? Das scheinen mir die interessanteren Fragen zu sein, denn wenn das übereinstimmt, weiß man, daß die Möglichkeit besteht, richtig gerechnet zu haben.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]