matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieFläche berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrationstheorie" - Fläche berechnen
Fläche berechnen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 19.09.2012
Autor: Tony1234

Aufgabe
Berechnen SIe die Fläche zwischen Graphen & x Achse im Integrationsintervall [mm] [0,2\pi] [/mm]


[mm] \integral_{0}^{2\pi}{sin(x) dx} [/mm]

Hallo, leider ist hier irgendwo der Wurm drin, wäre nett, wenn mir jemand helfen könnte...

[mm] \integral_{0}^{2\pi}{sin(x) dx} [/mm]

[mm] 2*\integral_{0}^{\pi}{sin(x) dx} [/mm]

[mm] =2*[-cos(x)]_{0}^{\pi} [/mm]

[mm] =2*(-cos(\pi)-(-cos(0)) [/mm]

=2*(-1-(-1))

=2*(0)

?????

        
Bezug
Fläche berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Mi 19.09.2012
Autor: reverend

Hallo Tony,

das ist aber ein wüstes Durcheinander.

> Berechnen SIe die Fläche zwischen Graphen & x Achse im
> Integrationsintervall [mm][0,2\pi][/mm]
>  
> [mm]\integral_{0}^{2\pi}{sin(x) dx}[/mm]

Das Integral steht ganz sicher so nicht in der Aufgabe!

>  Hallo, leider ist hier
> irgendwo der Wurm drin, wäre nett, wenn mir jemand helfen
> könnte...
>
> [mm]\integral_{0}^{2\pi}{sin(x) dx}[/mm]

Es ist nämlich nutzlos. Dieses Integral ergibt Null.

> [mm]2*\integral_{0}^{\pi}{sin(x) dx}[/mm]

Das ist der richtige Ansatz. Er hat aber mit dem vorigen Integral überhaupt nichts zu tun.

> [mm]=2*[-cos(x)]_{0}^{\pi}[/mm]
>  
> [mm]=2*(-cos(\pi)-(-cos(0))[/mm]

Bis hierhin korrekt.

> =2*(-1-(-1))

Es ist doch [mm] \cos{\pi}=-1, [/mm] also [mm] -\cos{\pi}=1 [/mm]

> =2*(0)
>
> ?????

Die richtige Lösung lautet also 4.

Grüße
reverend


Bezug
                
Bezug
Fläche berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mi 19.09.2012
Autor: Tony1234

Tatsächlich :))
Da steht f(x)=sin(x).. keine Ahnung, wie ich darauf kam?!?

Zum Cosinus. Ich habe das einfach so in den Taschenrechner eingetippt & es kam [mm] -cos(\pi)=-1 [/mm] heraus... kann ich es nicht so einfach eintippen oder stimmt da was mit dem Rechner nicht???



Bezug
                        
Bezug
Fläche berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mi 19.09.2012
Autor: schachuzipus

Hallo Tony1234,

> Tatsächlich :))
> Da steht f(x)=sin(x).. keine Ahnung, wie ich darauf kam?!?
>  
> Zum Cosinus. Ich habe das einfach so in den Taschenrechner
> eingetippt & es kam [mm]-cos(\pi)=-1[/mm] heraus... kann ich es
> nicht so einfach eintippen oder stimmt da was mit dem
> Rechner nicht???

Ich behaupte mal, dass du da was falsch eingetippt hast.

Es ist [mm] $\cos(\pi)=-1$, [/mm] also [mm] $-\cos(\pi)=-(-1)=+1$ [/mm]

Aber solche Werte sollte man sich auch nicht mit dem TR ausgeben lassen, die sollte man kennen. Was immer gut ist: zeichnen! Dann kannst du die Werte ablesen ...

Gruß

schachuzipus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]