matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungFläche e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Abiturvorbereitung" - Fläche e-Funktion
Fläche e-Funktion < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche e-Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:51 So 20.05.2007
Autor: Snoopymaus

Aufgabe
Berechnen Sie den Inhalt der Fläche, die vom graphen von f zwischen den grenzen a und b eingeschlossen wird:
a) f(x)=x³ ; a=1 ; b=3
b) [mm] f(x)=x^4 [/mm] +3x²;  a= -1 ; b =2
c) f(x)= [mm] \wurzel[3]{(x+1)} [/mm] ; a=0 ;b=2
d) f(x)=3e^(2x) ; a=-2; b=-1

Hallo, Verzeihung, wenn jemand Zeit hat, dann würde ich um Korrekturlesen bitten und um Berechnung der letzten Aufgabe. Ich steh gerade auf dem Schlauch bezüglich eines Wertes für e? Ich habe diese Frage in keinem anderen Forum gestellt.


a) [mm] \integral_{1}^{3}{x³ dx} [/mm] = [mm] \bruch{1}{4} [/mm] [mm] (3^4 [/mm] - [mm] 1^4) [/mm] = [mm] \bruch{1}{4} [/mm] (81 - 1) = [mm] \bruch{80}{4} [/mm] = 20 [FE]

b) [mm] \integral_{-1}^{2}{(x^4 +3x²) dx} [/mm] = [mm] \integral_{-1}^{2}{(x^4) dx} [/mm] +[mm] \integral_{-1}^{2}{(3x²) dx} [/mm]
    A = [mm] \bruch{1}{5} [/mm] [mm] (2^5 [/mm] - [mm] (-1)^5) [/mm] =  [mm] \bruch{1}{5} [/mm] (32+1) = [mm] \bruch{1}{5} [/mm] 33 = 6,6 [FE]

c) [mm] \integral_{0}^{2}{ \wurzel[3]{(x+1) dx} [/mm] = [mm] \integral_{0}^{2}{(x+1)^\bruch{1}{3} dx} [/mm]

   [mm] \integral_{}^{}{(x+1)^\bruch{1}{3} dx} [/mm] =  [mm] \bruch{3}{4} [/mm] ((x+1)^[mm] \bruch{4}{3} [/mm] )

A = [mm] \bruch{3}{4} [/mm] ((2+1)^[mm] \bruch{4}{3} [/mm] ) - [mm] \bruch{3}{4} [/mm] ((0+1)^[mm] \bruch{4}{3} [/mm] )= [mm] \bruch{3}{4} [/mm] (3^[mm] \bruch{4}{3} [/mm] ) - [mm] \bruch{3}{4} [/mm] (1^[mm] \bruch{4}{3} [/mm] ) [mm] \approx [/mm] 3,245 - 0,75 [mm] \approx [/mm] 2,495

d) [mm] \integral_{-2}^{-1}{ \(3 * e)^ (2x) dx} [/mm] = [mm] \bruch{3}{2} [/mm] ( e^(-2) - e^(-4))




        
Bezug
Fläche e-Funktion: Korrekturen
Status: (Antwort) fertig Status 
Datum: 21:00 So 20.05.2007
Autor: Loddar

Hallo Snoopymaus!



> a) [mm]\integral_{1}^{3}{x³ dx}[/mm] = [mm]\bruch{1}{4}[/mm] [mm](3^4[/mm] - [mm]1^4)[/mm] = [mm]\bruch{1}{4}[/mm] (81 - 1) = [mm]\bruch{80}{4}[/mm] = 20 [FE]

[ok]

  

> b) [mm]\integral_{-1}^{2}{(x^4 +3x²) dx}[/mm] = [mm]\integral_{-1}^{2}{(x^4) dx}[/mm] +[mm] \integral_{-1}^{2}{(3x²) dx}[/mm]
> A = [mm]\bruch{1}{5}[/mm] [mm](2^5[/mm] - [mm](-1)^5)[/mm] =  [mm]\bruch{1}{5}[/mm] (32+1) = [mm]\bruch{1}{5}[/mm] 33 = 6,6 [FE]

[notok] Was ist denn noch mit dem Integral [mm] \integral_{-1}^{2}{3x^2 \ dx}[/mm] ??


Außerdem musst Du bei Flächenberechungen aufpassen, dass Du nicht über eine Nullstelle hinweg integrierst.

Hier geht es gerade gut, da alle Teilflächen oberhalb der x-Achse liegen.



> c) [mm]\integral_{0}^{2}{ \wurzel[3]{(x+1) dx}[/mm] = [mm]\integral_{0}^{2}{(x+1)^\bruch{1}{3} dx}[/mm]
>
> [mm]\integral_{}^{}{(x+1)^\bruch{1}{3} dx}[/mm] =  [mm]\bruch{3}{4}[/mm] ((x+1)^[mm] \bruch{4}{3}[/mm] )
>
> A = [mm]\bruch{3}{4}[/mm] ((2+1)^[mm] \bruch{4}{3}[/mm] ) - [mm]\bruch{3}{4}[/mm] ((0+1)^[mm] \bruch{4}{3}[/mm] )= [mm]\bruch{3}{4}[/mm] (3^[mm] \bruch{4}{3}[/mm] ) -  [mm]\bruch{3}{4}[/mm] (1^[mm] \bruch{4}{3}[/mm] ) [mm]\approx[/mm] 3,245 - 0,75
> [mm]\approx[/mm] 2,495

[ok]


  

> d) [mm]\integral_{-2}^{-1}{ \(3 * e)^ (2x) dx}[/mm] = [mm]\bruch{3}{2}[/mm] ( e^(-2) - e^(-4))

[ok] Nun noch die Werte [mm] $e^{-2} [/mm] \ = \ [mm] \bruch{1}{e^2}$ [/mm] und [mm] $e^{-4} [/mm] \ = \ [mm] \bruch{1}{e^4}$ [/mm] ermitteln.


Gruß
Loddar


Bezug
                
Bezug
Fläche e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 So 20.05.2007
Autor: Snoopymaus

Ja erstmal tausend Dank, aber mein Problem ist doch gerade wie ich für e einen Wert ermittle?? Hab da irgendwo ne Gedächtnislücke. Wo krieg ich einen Wert für e her??

Die b korrigier ich gleich noch, war schlampig, sorry.

Bezug
                        
Bezug
Fläche e-Funktion: EULER'sche Zahl
Status: (Antwort) fertig Status 
Datum: 21:11 So 20.05.2007
Autor: Loddar

Hallo Snoopymaus!


Bei [mm] $\text{e}$ [/mm] handelt es sich doch um eine konstante Zahl, die sogenannte []EULER-Zahl mit [mm] $\text{e} [/mm] \ = \ 2.7182818...$


Gruß
Loddar


Bezug
                                
Bezug
Fläche e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 So 20.05.2007
Autor: Snoopymaus

Ja danke, ich hab sie nimmer auswendig gewusst und auch nirgendwo gefunden.

Bezug
                
Bezug
Fläche e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:59 Mo 21.05.2007
Autor: Snoopymaus

Jetzt alles Richtig?

b) [mm] \integral_{-1}^{2}{(x^4 +3x²) dx} [/mm] = [mm] \integral_{-1}^{2}{(x^4) dx} [/mm] +[mm] \integral_{-1}^{2}{(3x²) dx} [/mm]

    A = [mm] \bruch{1}{5} [/mm] [mm] (2^5 [/mm] - [mm] (-1)^5) [/mm] +  [mm] \bruch{3}{3} [/mm] [mm] (2^3 [/mm] - [mm] (-1)^3) [/mm]

      = [mm] \bruch{1}{5} [/mm] (32+1) + 8 + 1 = [mm] \bruch{33}{5} [/mm] +9 = 15,6 [FE]  [lichtaufgegangen]

und die d noch fertig rechnen mit e = 2,718... :

d) [mm] \integral_{-2}^{-1}{ \ 3 e^{2x} dx} [/mm] = [mm] \bruch{3}{2} [/mm] [mm] (e^{-2}- e^{-4}) [/mm] = [mm] \bruch{3}{2} [/mm] ([mm] \bruch{1}{e^{2}} [/mm] - [mm] \bruch{1}{e^{4}} [/mm]) [mm] \approx [/mm] 0,175 ob das wohl stimmen kann [keineahnung]


hm komisch, in der Vorschau steht die Signatur drunter und wenn ich abschicke nicht mehr, deshalb jetzt händisch:

tausend Dank und Gruß

Snoopy

Bezug
                        
Bezug
Fläche e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:58 Mo 21.05.2007
Autor: Martinius

Hallo,

alles richtig.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]