matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFläche unter-/oberhalb x-Achse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Fläche unter-/oberhalb x-Achse
Fläche unter-/oberhalb x-Achse < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche unter-/oberhalb x-Achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Di 14.02.2012
Autor: RaRa

Aufgabe
a) Zeichnen Sie den Graphen der Funktion  $f(x) = 2 [mm] x^3 -\frac{1}{2} x^2 [/mm] + 6 x – 16$ im Intervall $[-1,5;2,5]$ mithilfe einer Wertetabelle.
b) Die Gerade mit der Funktionsgleichung  $y=-x+12$  schneidet den Graphen von $f(x)$ im  Punkt $(2/10)$ . Prüfen Sie dies nach.
c) Bestimmen Sie den Inhalt der Fläche, die von der y-Achse, dem Graphen der
Funktion $f(x)$ und der Geraden  $y=-x+12$  eingeschlossen wird.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, ich habe ein Frage zu Teilaufgabe c). Da sich ein Teil der Fläche oberhalb und ein Teil der Fläche unterhalb der x-Achse befindet, muss ich die Gesamtfläche in geeignete Einzelteile aufteilen, diese anschließend berechnen und die Beträge addieren. Meine Aufteilung sieht man im Anhang (Skizze nur qualitativ, da sonst eine der Flächen schlecht erkennbar).
Ich kann in diesem Fall ja nicht einfach [mm] $\integral_{0}^{2}{(g(x)-f(x)) dx}$ [/mm] berechnen, weil ansosten der untere Teil negativ in die Gesamtfläche eingeht und das Ergebnis deswegen nicht stimmt.

Prinzipiell ist mir der Lösungsweg klar, jedoch habe ich Probleme mit den Nullstellen. Diese sind (mit einem geeigneten Applet) berechnet -1,4575244588657332 und zwei komplexe Nullstellen, letztere daher für diese Aufgabe (Schulstoff) nicht relevant.
Daher kann man doch die Nullstelle nicht mit herkömmlichen Methoden berechnen (also Raten plus Polynomdivision oder ähnliches).

Meiner Meinung nach benötige ich diese Nullstelle aber zum Lösen der Aufgabe. Habe ich jetzt einen totalen Denkfehler (andere Flächeneinteilung o. ä.) oder ist diese Aufgabe im Rahmen des Schulstoffes nicht lösbar?

Vielen Dank im Voraus für eure Unterstützung!
VG RaRa

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Fläche unter-/oberhalb x-Achse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 14.02.2012
Autor: steppenhahn

Hallo,


> a) Zeichnen Sie den Graphen der Funktion  [mm]f(x) = 2 x^3 -\frac{1}{2} x^2 + 6 x – 16[/mm]
> im Intervall [mm][-1,5;2,5][/mm] mithilfe einer Wertetabelle.
>  b) Die Gerade mit der Funktionsgleichung  [mm]y=-x+12[/mm]  
> schneidet den Graphen von [mm]f(x)[/mm] im  Punkt [mm](2/10)[/mm] . Prüfen
> Sie dies nach.
>  c) Bestimmen Sie den Inhalt der Fläche, die von der
> y-Achse, dem Graphen der
> Funktion [mm]f(x)[/mm] und der Geraden  [mm]y=-x+12[/mm]  eingeschlossen
> wird.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo, ich habe ein Frage zu Teilaufgabe c). Da sich ein
> Teil der Fläche oberhalb und ein Teil der Fläche
> unterhalb der x-Achse befindet, muss ich die Gesamtfläche
> in geeignete Einzelteile aufteilen, diese anschließend
> berechnen und die Beträge addieren. Meine Aufteilung sieht
> man im Anhang (Skizze nur qualitativ, da sonst eine der
> Flächen schlecht erkennbar).
>  Ich kann in diesem Fall ja nicht einfach
> [mm]\integral_{0}^{2}{(g(x)-f(x)) dx}[/mm] berechnen, weil ansosten
> der untere Teil negativ in die Gesamtfläche eingeht und
> das Ergebnis deswegen nicht stimmt.

Nein. Die Berechnung erfolgt mittels des Integrals, das du angegeben hast.
Es geht kein Teil negativ in die Gesamtfläche ein, denn dich interessiert ja die Differenz von g und f für die Flächeninhaltsberechnung und nicht der absolute Funktionswert von $f$, und im Intervall [0,2] ist stets

$g(x) [mm] \ge [/mm] f(x)$,

also auch

$g(x)- f(x) [mm] \ge [/mm] 0$.


Grüße,
Stefan


Bezug
                
Bezug
Fläche unter-/oberhalb x-Achse: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Di 14.02.2012
Autor: RaRa

Ah ok, ja klar, ich muss ja die resultierende Funktion $g(x)- f(x)$ betrachten, die hat im gesuchten Bereich keine Nullstellen ($ g(x)- f(x) [mm] \ge [/mm] 0 $) und daher kann man doch einfach integrieren.
Danke für den anscheinend dringend nötigen virtuellen Klaps auf den Hinterkopf ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]