matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFläche unter Funktionsgraphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Fläche unter Funktionsgraphen
Fläche unter Funktionsgraphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche unter Funktionsgraphen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:23 Di 02.05.2017
Autor: staytuned

Aufgabe
Bestimmen Sie a>0 so, dass die von den Graphen der Funktionen f und g eingeschlossene Fläche den angegebenen Inhalt A hat.

a) f(x) = -2+2a²
    g(x)= x²
    A   = 72

Hallo ihr Mathe Sensei,

ich komme bei einer Aufgabe nicht weiter und benötige eine kleine Hilfestellung

1. Integrationsgrenzen bestimmen

Bedingung:

   f(x) = g(x)
2a²-2x = x²
2x²-2a² = 0
    2x² = 2a²
     x² = a²
      x = a

[mm] x_{1}= [/mm] a [mm] x_{2}=-a [/mm]

Berechnung der Fläche in Abhängigkeit zu a

[mm] A_{(a)}= \integral_{-a}^{a}({f(x)-g(x)) dx} [/mm]
        

   =  [mm] \integral_{-a}^{a} [/mm] (2x²-2a²) dx

   = [mm] [\bruch{2}{3}x^{3}-2a^{2}x] [/mm]


[mm] A_{(a)}= \bruch{2}{3}a^{3}-2a^{3}-\bruch{2}{3}a^{3}+2a^{3} [/mm]
    
    = 0

Das kann ja alles so nicht stimmen. Könnt ihr mir bitte aufzeigen, wo mein Denkfehler liegt?


-Staytuned
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Fläche unter Funktionsgraphen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:29 Di 02.05.2017
Autor: Chris84


> Bestimmen Sie a>0 so, dass die von den Graphen der
> Funktionen f und g eingeschlossene Fläche den angegebenen
> Inhalt A hat.
>  
> a) f(x) = -2+2a²
>      g(x)= x²
>      A   = 72
>  Hallo ihr Mathe Sensei,

Huhu,

>  
> ich komme bei einer Aufgabe nicht weiter und benötige eine
> kleine Hilfestellung
>  
> 1. Integrationsgrenzen bestimmen
>  
> Bedingung:
>  
> f(x) = g(x)
>   2a²-2x = x²

Was hier links steht, stimmt nicht mit dem $f$ ueberein, das weiter oben steht (=> einmal ueberpruefen, bitte!)

>  2x²-2a² = 0

Egal, wie $f$ nun aussieht: Wenn du [mm] $x^2$ [/mm] nach links bringst, kommt links 'was anderes raus.

>      2x² = 2a²
>       x² = a²
>        x = a
>  
> [mm]x_{1}=[/mm] a [mm]x_{2}=-a[/mm]
>  
> Berechnung der Fläche in Abhängigkeit zu a
>  
> [mm]A_{(a)}= \integral_{-a}^{a}({f(x)-g(x)) dx}[/mm]
>          
>
> =  [mm]\integral_{-a}^{a}[/mm] (2x²-2a²) dx

Wie oben: Der Term kann so nicht stimmen!

>  
> = [mm][\bruch{2}{3}x^{3}-2a^{2}x][/mm]
>  
>
> [mm]A_{(a)}= \bruch{2}{3}a^{3}-2a^{3}-\bruch{2}{3}a^{3}+2a^{3}[/mm]
>  
>    
> = 0
>  
> Das kann ja alles so nicht stimmen. Könnt ihr mir bitte
> aufzeigen, wo mein Denkfehler liegt?
>  
>
> -Staytuned
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  

Gruss,
Chris

P.S.: Wenn man mit "Sensei" angesprochen wird, darf man dann mit "Padawan" antworten!? :D

Bezug
                
Bezug
Fläche unter Funktionsgraphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:56 Mi 03.05.2017
Autor: X3nion


> P.S.: Wenn man mit "Sensei" angesprochen wird, darf man
> dann mit "Padawan" antworten!? :D


Da kann ich mir einen Spruch nicht verkneifen:
"Du noch viel lernen musst, junger Padawan" [happy]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 11h 06m 8. fred97
ULinAEw/Eigenwerte einer Matrix
Status vor 13h 56m 6. Steffi21
SDiffRech/Funktionsschar untersuchen
Status vor 15h 20m 1. Takota
UAnaRn/Hinreich. Potentialkriterium
Status vor 16h 33m 8. meister_quitte
Mengenlehre/Potenzmenge, Surjektion
Status vor 21h 23m 7. Takota
UAnaRn/Vertauschbarkeit Diff / Integr
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]