matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabFläche unter unbek. Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Matlab" - Fläche unter unbek. Funktion
Fläche unter unbek. Funktion < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fläche unter unbek. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Sa 20.10.2012
Autor: heiede

Aufgabe
Fläche unter einer unbekannten Funktion bestimmen. (Mithilfe der X und Y-Werte)

Hey Leute,
ich habe X und Y-Werte die einen Graph erzeugen. Nun soll ich die Fläche unter dem Graph bestimmen. [Externes Bild http://imageshack.us/a/img832/9202/diagrammc.jpg] Irgendwie müsste man die Y-Werte zusammenrechnen oder?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
danke! :)

        
Bezug
Fläche unter unbek. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 20.10.2012
Autor: Marcel

Hallo,

> Fläche unter einer unbekannten Funktion bestimmen.
> (Mithilfe der X und Y-Werte)
>  Hey Leute,
> ich habe X und Y-Werte die einen Graph erzeugen.
> Nun soll
> ich die Fläche unter dem Graph bestimmen.
> http://imageshack.us/a/img832/9202/diagrammc.jpg

wie liegen die Werte vor: Ich nehme nämlich stark an, dass Du nur an
diskreten Stellen [mm] $y\,$-Werte [/mm] vorliegen hast, und dass der Graph, den
man oben sieht, durch eine "angefittete Funktion" dargestellt wird.
Da kann man auch schonmal fragen: Wenn Du für die [mm] $x,y\,$-Werte [/mm] eine
konkrete Vermutung für [mm] $f(x)\,$ [/mm] hast (Polynom - hier vielleicht eher
trigonometrisches Polynom), womit "fittest" Du - also wie wird die
Funktion, die die Werte approximiert, beschrieben. Denn eigentlich macht
es nur Sinn, die Fläche der angezeigten Funktion zwischen des Graphen
von [mm] $f\,$ [/mm] und der [mm] $x\,$-Achse [/mm] zu bestimmen, wenn man weiß, wie [mm] $f\,$ [/mm]
aussehen soll. Ansonsten musst Du das Integral approximieren, wenn Du
nur mit den diskreten Werten arbeitest: Da gibt's viele Möglichkeiten,
die aus der Numerik bekannt sind. Eine der einfachsten wäre etwa die
Trapezregel.

> Irgendwie
> müsste man die Y-Werte zusammenrechnen oder?

Nein, im allgemeinen nicht. Aber natürlich kannst Du, wenn Du das Integral
nur näherungsweise berechnen willst, einfach mal, wie man es beim
Riemanintegral macht, Ober- und Untersumme Deiner Werte berechnen -
ist ja auch schon interessant, sich mal ausgeben zu lassen, wie stark die
sich hier unterscheiden. Das wäre eigentlich das erste, was ich jetzt, ohne
irgendwelche Numerik speziell zu bemühen, vorschlagen würde. Und viel
mehr als Rechtecksflächenberechnungen braucht man dafür hier nicht...
Okay, das Maximum bzw. Minimum zweier Funktionswerte sollte man auch
ausrechnen können...

P.S.
Ich habe ganz übersehen, dass Du das ja hier im Matlab-Forum gefragt
hast. Dann such' halt mal nach "numerischen Integrationsverfahren"
mit google, da findest Du Antworten. Und dann musst Du halt gucken,
was da in Matlab/Octave schon umgesetzt worden ist. Ich denke schon,
dass man in Matlab die Trapezregel als eigene Funktion schonmal hat...
Aber testweise kannst Du ja dennoch meinen Vorschlag von oben selbst
umsetzen: Schreibe eine Funktion zur Berechnung der Ober- bzw.
Untersumme. Da würde ich dann auch einfach mit den direkt gegebenen
Werten arbeiten - also dummerweise so, als wenn Du (bei der Integral-
näherungsberechnung) hier eine stückweise konstante Funktion hättest...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]