Fläche zw. 2 Funktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:14 Sa 30.01.2021 | Autor: | Schobbi |
Aufgabe | Der Graph der Funktion f(x)=1/2x²(4-x²) schließt mit der x-Achse im 1. Quadranten eine Fläche vollständig ein. Durch den Hochpunkt H des Graphen der Funktion f verläuft eine Gerade g, die diese Fläche halbiert. Berechnen Sie den Schnittpunkt S der Geraden g mit der x-Achse. |
Hallo zusammen, bei obiger Aufgabe könnte ich Eure Hilfe gebrauchen und würde mich freuen, wenn Ihr mir den ein oder anderen Tipp geben könntet. DANKE schon mal vorab!
Ich hab erstmal den Hochpunkt [mm] HP(\Wurzel{2}|4) [/mm] und die Nullstellen Nf(2|0) und im Anschluss das Integral [mm] \integral_{0}^{2}{f(x) dx}=\bruch{32}{15}bestimmt. [/mm] Im Folgenden würde ich gerne die Gerade g bestimmen, die durch den Punkt [mm] H(HP(\Wurzel{2}|4)) [/mm] und der Nullstelle von [mm] Ng(x_{n}|0) [/mm] verläuft, um dann das Integral [mm] \integral_{\wurzel{2}}^{2}{f(x)-g(x)} [/mm] dx in Abhängigkeit von [mm] x_{n} [/mm] zu bestimmen. Im letzten Schritt möchte ich dann das Ergebnis mit [mm] \bruch{32}{15}:2=\bruch{16}{15} [/mm] gleichsetzen und nach [mm] x_{n} [/mm] auflösen.
Soweit meine Idee, aber wie genau sieht dann meine Gerade g aus? Oder gibt es vielleicht noch eine andere Idee die Aufgabe zu lösen?
DANKE!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:06 Sa 30.01.2021 | Autor: | statler |
Hallo!
> Der Graph der Funktion f(x)=1/2x²(4-x²)
besser f(x)=(1/2)x²(4-x²) oder [mm] $\frac{1}{2}x^{2}(4 [/mm] - [mm] x^{2})$
[/mm]
> schließt mit der
> x-Achse im 1. Quadranten eine Fläche vollständig ein.
> Durch den Hochpunkt H des Graphen der Funktion f verläuft
> eine Gerade g, die diese Fläche halbiert. Berechnen Sie
> den Schnittpunkt S der Geraden g mit der x-Achse.
> Hallo zusammen, bei obiger Aufgabe könnte ich Eure Hilfe
> gebrauchen und würde mich freuen, wenn Ihr mir den ein
> oder anderen Tipp geben könntet. DANKE schon mal vorab!
>
> Ich hab erstmal den Hochpunkt [mm]HP(\Wurzel{2}|4)[/mm]
Der Hochpunkt ist [mm] $(\sqrt{2}|2)$.
[/mm]
> und die
> Nullstellen Nf(2|0) und im Anschluss das Integral
> [mm]\integral_{0}^{2}{f(x) dx}=\bruch{32}{15}[/mm] bestimmt. Im
> Folgenden würde ich gerne die Gerade g bestimmen, die
> durch den Punkt [mm]H(HP(\Wurzel{2}|4))[/mm] und der Nullstelle von
> [mm]Ng(x_{n}|0)[/mm] verläuft, um dann das Integral
> [mm]\integral_{\wurzel{2}}^{2}{f(x)-g(x)}[/mm] dx in Abhängigkeit
> von [mm]x_{n}[/mm] zu bestimmen. Im letzten Schritt möchte ich dann
> das Ergebnis mit [mm]\bruch{32}{15}:2=\bruch{16}{15}[/mm]
> gleichsetzen und nach [mm]x_{n}[/mm] auflösen.
Dann erzeugt eine vertikale Gerade durch den HP 2 Teilflächen der Größen [mm] $\frac{28}{30}\sqrt{2} \approx [/mm] 1,32$ und [mm] $\frac{32}{15} [/mm] - [mm] \frac{28}{30}\sqrt{2} \approx [/mm] 0,813$.
Die gesuchte Gerade muß die Differenz 0,506532 zwischen diesen beiden Flächen halbieren, also die Fläche [mm] $\frac{14}{15}\sqrt{2} [/mm] - [mm] \frac{16}{15} \approx [/mm] 0,2533 haben. Das entstehende rechtwinklige Dreieck hat ja die Höhe 2, also muß die Grundseite gerade den Wert der Fläche haben.
Damit kann man den Nullpunkt der Geraden bestimmen.
>
> Soweit meine Idee, aber wie genau sieht dann meine Gerade g
> aus? Oder gibt es vielleicht noch eine andere Idee die
> Aufgabe zu lösen?
s. o.
Gruß Dieter
|
|
|
|
|
Hallo, ich habe noch eine Zeichnung angefertigt, sie wird Dir helfen
"gelb ist gleich hellblau plus rot"
[Dateianhang nicht öffentlich]
Steffi
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|