matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächen oberhalb & unterhalb
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Flächen oberhalb & unterhalb
Flächen oberhalb & unterhalb < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen oberhalb & unterhalb: Bestimmen einer Fläche
Status: (Frage) beantwortet Status 
Datum: 17:46 Do 15.11.2007
Autor: MatheNietchen

Aufgabe
Bestimmen Sie den inhalt der Fläche, die der Graph von [mm] f(x)=x^4-4x² [/mm] mit der x-Achse einschließt.

Hallo!
Folgender Lösungsweg. Zunächst rechne ich die Nullstellen aus und erhalte eine doopelte bei Null v bei -2/2.
Dann rechne ich [mm] \integral_{-2}^{0}{f(x)=x^4-4x² dx} [/mm] + [mm] \integral_{0}^{2}{f(x)=x^4-4x² dx} [/mm] und rhalte beim Auflösen 12,8. Richtig?

        
Bezug
Flächen oberhalb & unterhalb: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Do 15.11.2007
Autor: Tyskie84

Hallo!

Ja die Nullstellen lauten: [mm] x_{01}=0 x_{02}=2 x_{03}=-2 [/mm]

Dann kann man noch die Extremstellen berechnen.

Wir haben einen Hochpunkt bei HP(0|0) und zwei Tiefpunkte [mm] TP_{1}(\wurzel{2}|-4) [/mm] uund [mm] TP_{2}(-\wurzel{2}|-4) [/mm]

Jetzt berechnest du das Integral:

[mm] \integral_{-2}^{0}{x^{4}-4x² dx} [/mm] + [mm] \integral_{0}^{2}{x^{4}-4x² dx}. [/mm] Wenn ich das berechne bekomme ich aber [mm] \bruch{32}{3} [/mm] also 10* [mm] \bruch{2}{3} [/mm] heraus!

Übrigens musst du ungefähr wissen wie der Graph zu der Funktion aussieht ansonsten bekommst du nicht den "wahren" Flächeninhalt heraus weil die beiden Flächen sich ja aufheben könnten. Also rechne sicherheitshalber auch noch die Extrempunkte aus. Das geht schnell.

Gruß
Tyskie

Bezug
                
Bezug
Flächen oberhalb & unterhalb: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Do 15.11.2007
Autor: MatheNietchen

Der Graph sieht ja förmlich aus, wie ein w, ichtig?
Also meine rechnung sieht so aus

$ [mm] \integral_{-2}^{0}{x^{4}-4x² dx} [/mm] $ + $ [mm] \integral_{0}^{2}{x^{4}-4x² dx}. [/mm] $
= [mm] \integral_{-2}^{0}{0-[1/5*(-2)^5-4/3(2)^3)]} [/mm] + [mm] \integral_{0}^{2}{[1/5*(2)^5-4/3(2)^3)]} [/mm]
ausgrechnet ergibt das : -4 4/15 + (-4 4/15) = - 8 8/15

Bezug
                        
Bezug
Flächen oberhalb & unterhalb: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Do 15.11.2007
Autor: Steffi21

Hallo, jetzt ist dein Ergebnis korrekt (fast), du schreibst [mm] -8\bruch{8}{15}, [/mm] die beiden Flächenstücke liegen unterhalb der x-Achse, darum bekommst du das Vorzeichen minus, somit sind es [mm] 8\bruch{8}{15}FE, [/mm] kleiner Hinweis für die Zukunft, setze deine Integrale in Betragsstriche, dann bekommst du immer einen positiven Wert,

Steffi

Bezug
                                
Bezug
Flächen oberhalb & unterhalb: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Do 15.11.2007
Autor: Tyskie84

Hallo Steffi!

Jetzt hab ich es auch ;) [mm] \bruch{128}{15} [/mm]

Gruß
Tyskie

Bezug
                
Bezug
Flächen oberhalb & unterhalb: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 18:26 Do 15.11.2007
Autor: Steffi21

Hallo, auch dein Ergebnis ist leider nicht korrekt, A=8,534FE, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]