matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächen zwischen 2 Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Flächen zwischen 2 Graphen
Flächen zwischen 2 Graphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen zwischen 2 Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 So 13.05.2012
Autor: DarkJiN

Ich hab eine Frage. Wie berechne ich eine Fläche zwischen zwei Graphen, wenn sie teilweise unter der X-Achse ist. Ich darf doch normalerweise nicht über Nullstellen hinaus integrieren, oder?



Als Beispiel hier auf Seite 19 des Pdfs:

http://www.klassenarbeiten.de/oberstufe/material/pdf/69.pdf





        
Bezug
Flächen zwischen 2 Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 So 13.05.2012
Autor: Diophant

Hallo,

wenn bspw. f(a)=f(b)=f(c)=0 ist, also a<b<c (unterschiedliche)Nullstellen sind und f ist zwischen a und c integrierbar, dann rechne einfach die Beträge der Integrale über den einzelnen Intervallen aus, also hier:

A=[mm]\vmat{ \integral_{a}^{b}{f(x) dx}}+\vmat{ \integral_{b}^{c}{f(x) dx}} [/mm]


Gruß, Diophant

Bezug
                
Bezug
Flächen zwischen 2 Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 So 13.05.2012
Autor: DarkJiN

sorry das versteh ich nicht so recht.



Normalerweise teil ich das doch auf. Und intergriere imemr zwischen den Nullstellen.



Sprich wenn ich die Fläche zwischen f(a) und f(d) bestimmen soll und dazwischen f(b)=0 und f(c)=0



berechne ich


[mm] \integral_{a}^{b}{f(x) dx}+\integral_{b}^{c}{f(x) dx}+\integral_{c}^{d}{f(x) dx} [/mm]


oder?


Was passiert aber jetzt wenn ich die Fläche zwischen zwei Graphen berechnen will? Dort zieh ich für gewöhnlich "den unteren" vom "oberen" ab.


Und was passiert wenn nun ein Teil der Funktion sich unbter der x-Achse befindet? Muss ich das ganze dann auch in geeignete Stücke aufteilen, oder ignorier ich das einfach? (wie in dem PDF dokument auf Seite 19)



--------->[]PDF-Dokument (siehe Seite 19)

Bezug
                        
Bezug
Flächen zwischen 2 Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 So 13.05.2012
Autor: Blech

Hi,

bastel Dir die Fläche aus Teilen zusammen.

In Deinem PDF ist die grüne Fläche:

Die Fläche unter t:
[mm] $A_t [/mm] := [mm] \frac [/mm] 12 t(b)*(b- (-3.2)) - [mm] \frac [/mm] 12 t(a)*(a-(-3.2))$

Minus die Fläche zw. f und der x-Achse im Intervall a und -0.5
$- [mm] \int_a^{-0.5} [/mm] f(x)\ dx$

Plus die Fläche zw. f und der x-Achse im Intervall -0.5 und 1.5
[mm] $-\int_{-0.5}^{1.5} [/mm] f(x)\ dx$

Minus die Fläche unter f zw. 1.5 und b
[mm] $-\int_a^{-0.5} [/mm] f(x)\ dx$


Wie Du siehst kann man die letzten 3 zusammenfassen zu
[mm] $-\int_a^b [/mm] f(x)\ dx$

weil praktischerweise die Flächen, wo f(x)>0 ist subtrahiert werden müssen, und wo es <0 ist, addiert.




Das funktioniert immer, weil die Fläche A an jeder Stelle x die Höhe
$t(x)-f(x)$
hat. Und diese Höhe ist immer positiv, weil zw. a und b $t(x)>f(x)$.

t(x)-f(x) ist selber eine Funktion, nennen wir sie g,

$g(x):= t(x)-f(x)$


Und g ist auf dem Intervall (a,b) positiv (wiederum: $t(x) > f(x)$, zw. a und b), also ist die Fläche unter g einfach das Integral

$A = [mm] \int_a^b [/mm] g(x)\ dx$

Das Integral über g ist gleich der Fläche A, weil wir beim Integrieren die Fläche eh in eine Million vertikale Scheibchen einteilen. Ob diese Scheibchen jetzt zwischen t und f liegen (wie bei A), oder direkt auf der x-Achse sitzen (wie bei g(x)) ist egal.

ciao
Stefan

Bezug
                                
Bezug
Flächen zwischen 2 Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 So 13.05.2012
Autor: DarkJiN

ah verstanden. okay danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]