matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächen zwischen zwei Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Flächen zwischen zwei Graphen
Flächen zwischen zwei Graphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächen zwischen zwei Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Do 10.01.2008
Autor: Likemathe

Aufgabe
Die Funktion f ist auf dem Intervall (a;b) definiert und es ist f(a) [mm] \not= [/mm] f(b). Wenn c [mm] \in \IR [/mm] mit f(a)<c<f(b) oder f(b)<c<f(a) ist, begrenzen der Graph von f sowie die Geraden mit den Gleichungen x=a,x=b und y=c eine Fläche,die aus zwei Teilen besteht. Bestimmen sie c so,dass die beiden Teilflächen denselben Inhalt haben.

Vielleicht ist es sehr einfach aber ich habe leider absolut keine Ahnung was ich machen soll.
[mm] f(x)=4x-x^2 [/mm]      a=0;b=2


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke schonmal für die Hilfe

        
Bezug
Flächen zwischen zwei Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Do 10.01.2008
Autor: M.Rex

Hallo und [willkommenmr]

Mach dir mal zwei Skizzen:

1.
[Dateianhang nicht öffentlich]

2.
[Dateianhang nicht öffentlich]

Zuerst rechne mal die blaue Fläche im ersten Bild hier aus, das sollte ja noch ohne Probleme machbar sein.

Jetzt musst du die Gerade y=c so bestimmen, dass die gelbe Fläche im zweiten Bild genau halb so gross ist, wie die blaue im ersten.
(Die orange Linie im zweiten passt nicht, das nur zur Verdeutlichung)
dazu musst du natürlich auch die untere Integralgrenze berechnen.

Dies ist der Schnittpunkt der Geraden y=c und f(x)=4x-x²

Also:
4x-x²=c
[mm] \gdw [/mm] x²-4x+c=0
[mm] \Rightarrow x_{1;2}=2\pm\wurzel{4-c} [/mm]

Hier kommt (Warum?) nur die Lösung [mm] 2-\wurzel{4-c} [/mm] in Frage.

Also musst du das c so bestimmen, dass:

[mm] \bruch{1}{2}*A_{blau}=A_{gelb} [/mm]
[mm] \gdw \bruch{\integral_{0}^{2}4x-x²dx}{2}=\integral_{2-\wurzel{4-c}}^{2}4x-x²-cdx [/mm]
Daraus berechnest du jetzt das c

Marius

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpeg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]