matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenbestimmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächenbestimmung
Flächenbestimmung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung: Gleichsetzungsprobleme
Status: (Frage) beantwortet Status 
Datum: 10:22 So 10.12.2006
Autor: Velvet

Aufgabe
Berechne den Inhalt der von den Graphen von f und g eingeschlossenen Fläche.
[mm] f(x)=x^3-4x [/mm]  ;  [mm] g(x)=x^2-4 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

mir ist der Ansatz zur Lösung dieser Aufgabe bekannt, jedoch habe ich schon beim ersten Schritt der Schnittstellenbestimmung Probleme.

Ich muss die beiden gegebenen Funktionen gleichsetzen, um die Schnittstellen zu finden.

[mm] x^3-4x=x^2-4 (-x^2, [/mm] +4)

[mm] x^3-x^2-4x+4=0 [/mm]

Das eigentliche Ziel ist die Gleichung in die pq-Normalform zu bringen, allerdings kann ich wegen der "4" nicht ausklammern, was ich normalerweise getan hätte.
Deshalb habe ich es mit der 1.Ableitung versucht

[mm] 3x^2-2x-4 [/mm]   (:3)

pq-Formel        [mm] x^2 [/mm] -2/3x -4/3

Nach der pq-Formel habe ich unter der Wurzel (16/9 - 4/3) stehen und da die Wurzel aus 4/9 irgendeine lange Dezimalzahl ist, kann das Ergebnis nicht stimmen!

Kann mir vielleicht jemand bitte weiterhelfen? Was habe ich falsch gemacht?


        
Bezug
Flächenbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 So 10.12.2006
Autor: piet.t

Hallo velvet,
[willkommenmr]

> Hallo,
>  
> mir ist der Ansatz zur Lösung dieser Aufgabe bekannt,
> jedoch habe ich schon beim ersten Schritt der
> Schnittstellenbestimmung Probleme.
>  
> Ich muss die beiden gegebenen Funktionen gleichsetzen, um
> die Schnittstellen zu finden.

[ok]Das ist schon mal richtig.

>  
> [mm]x^3-4x=x^2-4 (-x^2,[/mm] +4)
>  
> [mm]x^3-x^2-4x+4=0[/mm]
>  
> Das eigentliche Ziel ist die Gleichung in die pq-Normalform
> zu bringen, allerdings kann ich wegen der "4" nicht
> ausklammern, was ich normalerweise getan hätte.

Bei einer allgemeinen Gleichung dritten Grades wird das mit der pq-Normalform auch nicht immer klappen - da muss man dann einen kleinen Umweg gehen. DAzu gleich mehr.

>  Deshalb habe ich es mit der 1.Ableitung versucht
>  
> [mm]3x^2-2x-4[/mm]   (:3)
>  
> pq-Formel        [mm]x^2[/mm] -2/3x -4/3
>  
> Nach der pq-Formel habe ich unter der Wurzel (16/9 - 4/3)
> stehen und da die Wurzel aus 4/9 irgendeine lange
> Dezimalzahl ist, kann das Ergebnis nicht stimmen!

Da hast Du recht! Dein Ansatz besagt, dass die Funktionen f und g an der Stelle x den gleichen Funktionswert haben. Das bedeutet aber noch lange nicht, dass dort dann auch die Ableitungen gleich sein müssen - und das wäre ja die Aussage, wenn Du die Gelichung einfach ableitest.

Wie kommt man dann auf die Lösung?
Wenn man eine Gleichung 3. Grades nicht durch einfache Umformungen (wie z.B. Ausklammern) auf einen kleineren Grad reduzieren kann, dann versucht man in der Regel, erst mal eine Lösung zu erraten. In der Schul funktioniert das meistens (so sind die Aufgaben ja gebaut), probiere doch einfach mal ein paar der ganzen Zahlen von -4 bis 4 durch!
Hat man nun die erste Lösung gefunden (z.B. a), dann kann man durch Polynomdivision den Grad der verbleibenden Gleichung um 1 reduzieren:
[mm](x^3-x^2-4x+4):(x-a)=????[/mm]
Ist a Lösung, dann geht die Polynomdivision immer auf und man kann die ursprüngliche Gleichung schreiben als
[mm](????)*(x-a)=0[/mm]
Und dann findet man weitere Lösungen, indem man ????=0 betrachtet.

Versuch das einfach mal!

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]