matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächenbr. von 2 Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Flächenbr. von 2 Graphen
Flächenbr. von 2 Graphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbr. von 2 Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Di 10.03.2009
Autor: Shiva

Aufgabe
Bestimmen Sie k [mm] \in \IR [/mm] so, dass die von den Schaubildern der Funktion f und g eingeschlossene Fläche den Inhalt A hat. Zeichnen sie eine skizze und erleutern Sie daran den Einfluss des parameters k.

f(x) = [mm] x^{3} [/mm]  g(X) = kx   A = [mm] \bruch{1}{4} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So weit binn ich:

Schnittpunkte der beiden Graphen:
f(x) = g(x)
[mm] x^{3} [/mm] = kx  => x1 = [mm] \wurzel{k} [/mm] und x2 = 0

Wegen der Symetrie muss ich ja nur eine Seite der Fläche berechnen und am schluss mal 2 nehemen.
also:

A= [mm] \bruch{1}{4} [/mm] => [mm] \bruch{A}{2} [/mm] = 0,5

dann
g(x) leigt ja über f(x)
0,5 = [mm] \integral_{x1}^{x2}{g(x)- f(x) dx} [/mm]
0,5 = [mm] [\bruch{k}{2}x^{2} [/mm] - [mm] \bruch{1}{4} x^{4}] [/mm] (im intervall [mm] \wurzel{k} [/mm] und 0)

Einsetzten un Auflösen nach K:

0,5= [mm] \bruch{k}{2}(\wurzel{k})^{2}-(\bruch{1}{4}(\wurzel{k})^{4}) [/mm]
= [mm] \bruch{k}{2}k-(\bruch{1}{4}k^{2}) [/mm]
= [mm] \bruch{k^{2}}{2}-(\bruch{k^{2}}{4}) [/mm]  
Jetzt den einen Bruch erweitern
= [mm] \bruch{2k^{2}}{4}-(\bruch{k^{2}}{4}) [/mm]   | *4
[mm] 2=2k^{2}-k^{2} [/mm]
[mm] 2=k^{2} [/mm] (2-1)
[mm] 2=k^{2} [/mm]  | [mm] \wurzel{} [/mm]
[mm] k=\wurzel{2} [/mm]

also ist das intervall [mm] \wurzel{2} [/mm] und 0. Setzt man das im Integral ein (mit GTR) kommt aber 0.5857 raus ..das ist zwas fast richtig aber nicht ganz .. wo ist der Fehler??

.. ich hoffe was ich gerechnet habe ist nachvollziehbar!


        
Bezug
Flächenbr. von 2 Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:17 Di 10.03.2009
Autor: Steffi21

Hallo, dein Fehler steckt in [mm] \bruch{A}{2}=\bruch{1}{8}=0,125, [/mm] Steffi

Bezug
                
Bezug
Flächenbr. von 2 Graphen: oh
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:31 Di 10.03.2009
Autor: Shiva

..wie peinlich ^^ ..danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]