matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenFlächeninhalt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Flächeninhalt
Flächeninhalt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 So 06.12.2009
Autor: Elisabeth17

Aufgabe
Gegeben ist die Funktion f durch f(x)= x + [mm] e^{-x}. [/mm]
a) Untersuchen Sie das Schaubild auf Extrem- und Wendestellen sowie Asymptoten.
b) Das Schaubild von f, die Asymptote und die y-Achse begerenzen eine (ins Unendliche reichende9 Fläche. Untersuchen Sie, ob diese einen endlichen Flächeninhalt hat.

Hallo Matheforum!

Bin gerade am Rechnen dieser Aufgabe.
a) habe ich schon erledigt:
Extremstelle bei x=0 (und zwar ein Minimum M(0|1)).
keine Wendestellen

Keine senkrechte oder waagrechte Asymptoten, aber eine schiefe Asymptote (y=x).

Jetzt habe ich aber ein Problem beim Lösen der Teilaufgabe b):

Mein bisheriger "Rechenweg"/ meine Überlegungen sehen so aus:

[mm] \integral_{0}^{a}{(x+\bruch{e}{x})-x dx} [/mm] = [mm] \integral_{0}^{a}{\bruch{e}{x} dx} [/mm] = [e*ln(x)]b,0 = e*ln(b)-e*ln(0)

Jetzt ist es doch so, dass e*ln(0) keine Lösung hat. Wie behandle ich das Ganze dann?

Stünde dort etwas anderes, hätte ich geschrieben:
Für [mm] a->+\infty [/mm] strebt xy gegen blablabla …
bzw. hat xy keinen Grenzwert und damit hat die Fläche keinen endlichen Flächeninhalt.

Wie mache ich das aber mit e*ln(b)-e*ln(0) ?

Würde mich freuen, wenn mir jemand helfen könnte!

LG Eli

        
Bezug
Flächeninhalt: falsch umgeformt
Status: (Antwort) fertig Status 
Datum: 15:04 So 06.12.2009
Autor: Loddar

Hallo Elisabeth!


Du hast hier falsch umgeformt, da [mm] $e^{-x} [/mm] \ [mm] \red{\not=} [/mm] \ [mm] \bruch{e}{x}$ [/mm] !

Die Stammfunktion zu [mm] $e^{-x}$ [/mm] lautet [mm] $-e^{-x}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 So 06.12.2009
Autor: Elisabeth17

Hallo Loddar,

danke für die Hilfe!

Die schiefe Asymptote y=x ist ja dennoch richtig, oder?

Damit ist die Stammfunktion [mm] -e^{-a}+e^{0}= -e^{-a}+1 [/mm]

F+r [mm] a->+\infty [/mm] strebt [mm] -e^{-a}+1 [/mm] gegen 1.
Der Inhalt der gesuchten, ins Unendlich recihende Fläche ist damit 1.

Richtig?

LG Eli

Bezug
                        
Bezug
Flächeninhalt: richtig
Status: (Antwort) fertig Status 
Datum: 15:48 So 06.12.2009
Autor: Loddar

Hallo Eli!


[daumenhoch] Allet chic!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]