matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhalt berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Flächeninhalt berechnen
Flächeninhalt berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt berechnen: Anwendung GTR
Status: (Frage) beantwortet Status 
Datum: 07:25 Mi 19.09.2018
Autor: Mathilda1

Aufgabe
Berechnen Sie die Fläche unter dem Graphen f(x) = [mm] 1/x^2 [/mm] im Intervall I= [-2;2]

In diesem Intervall ist ja 0 eingeschlossen, wofür die Funktion nicht definiert ist. Wie kann ich den Flächeninhalt trotzdem mit dem GTR bestimmen?
Vielen Dank

        
Bezug
Flächeninhalt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Mi 19.09.2018
Autor: fred97


> Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> Intervall I= [-2;2]
>  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> Funktion nicht definiert ist. Wie kann ich den
> Flächeninhalt trotzdem mit dem GTR bestimmen?
>  Vielen Dank  

Die Aufgabe ist ja völlig bescheuert ! Das uneigentliche Integral [mm] $\int_{-2}^2 \frac{1}{x^2} [/mm] dx$ ist divergent:

Sei $0<a<2$. Dann ist [mm] $\int_{a}^2 \frac{1}{x^2} [/mm] dx=[- [mm] \frac{1}{x}]_a^2=\frac{1}{a}-\frac{1}{2} \to \infty$ [/mm]  für $a [mm] \to [/mm] 0+$.

Analog: ist $-2<a<0$, so hat man  [mm] $\int_{-2}^a \frac{1}{x^2} [/mm] dx [mm] \to \infty$ [/mm] für  $a [mm] \to [/mm] 0-$.


Bezug
        
Bezug
Flächeninhalt berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 19.09.2018
Autor: abakus


> Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> Intervall I= [-2;2]
>  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> Funktion nicht definiert ist. Wie kann ich den
> Flächeninhalt trotzdem mit dem GTR bestimmen?
>  Vielen Dank  


Ist das die Originalaufgabe, oder handelt es sich um eine Anwendungsaufgabe mit einem speziellen Betonelement (welches auch noch von anderen Linien begrenzt ist)?


Bezug
                
Bezug
Flächeninhalt berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Mi 19.09.2018
Autor: fred97


> > Berechnen Sie die Fläche unter dem Graphen f(x) = [mm]1/x^2[/mm] im
> > Intervall I= [-2;2]
>  >  In diesem Intervall ist ja 0 eingeschlossen, wofür die
> > Funktion nicht definiert ist. Wie kann ich den
> > Flächeninhalt trotzdem mit dem GTR bestimmen?
>  >  Vielen Dank  
>
>
> Ist das die Originalaufgabe, oder handelt es sich um eine
> Anwendungsaufgabe mit einem speziellen Betonelement
> (welches auch noch von anderen Linien begrenzt ist)?

Hier hätte ich ein solches Betonelement:

https://www.youtube.com/watch?v=Zyp5Idt7aa8&feature=youtu.be


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]