matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungFlächeninhalt bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Flächeninhalt bestimmen
Flächeninhalt bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt bestimmen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:27 Mo 12.12.2011
Autor: cdromabi

Aufgabe
Berechne den Inhalt der von den Graphen von f und g eingeschlossenen Fläche !

Hallo liebes Forum,

hab einen neuen Mathelehrer, der nicht gut erklären kann( erste klausur durchschnitt 4,3 oder höher)

Ich kenn mich jetzt nicht mit den Zeichen dort aus. Ich versuche erstmal so.

a) f(x)=x² und g(x)=-x+2

So Nullstellen berechnet : -2 und 1 .

Nun Integral von g(x) - f(x) in den grenzen von -2 und 1 .
Meine erste Frage ist: wieso g(x)-f(x) und nicht umgekehrt?

Und dann hat mein Lehrer folgendes an die Tafel geschrieben:
f(0)=0
g(0)=2
Frage: wofür?

Und dann die Stammfunktion.
               |1
-1/2x²+2x-1/3x³|
               |-2

Wie rechne ich dann den Rest aus?

Danke im voraus.
Ich hoffe Ihr könnt mir helfen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 12.12.2011
Autor: eddiebingel

Die Nullstellen von deiner Differenzfunktion sind korrekt es ist im Prinzip egal ob du f(x) - g(x) oder g(x) - f(x) rechnest es dreht sich nur das Vorzeichen um und da eine Fläche nicht negativ sein kann musst du halt nur Betragsstriche setzen.

Deine Stammfkt hast du denke ich richtig benutze aber bitte das nächste mal den Editor ist übersichtlicher.
Jetzt setzeeinfach die Grenzen in die Stammfkt.ein mittels des Hauptsatzes folgt, wenn F deine Stammfkt. ist

A= F(1)-F(-2)

lg eddie

Bezug
        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 12.12.2011
Autor: fred97


> Berechne den Inhalt der von den Graphen von f und g
> eingeschlossenen Fläche !
>  Hallo liebes Forum,
>
> hab einen neuen Mathelehrer, der nicht gut erklären kann(
> erste klausur durchschnitt 4,3 oder höher)
>  
> Ich kenn mich jetzt nicht mit den Zeichen dort aus. Ich
> versuche erstmal so.
>  
> a) f(x)=x² und g(x)=-x+2
>  
> So Nullstellen berechnet : -2 und 1 .
>  
> Nun Integral von g(x) - f(x) in den grenzen von -2 und 1 .
>  Meine erste Frage ist: wieso g(x)-f(x) und nicht
> umgekehrt?

Es ist g [mm] \ge [/mm] f auf [-2,1]

>  
> Und dann hat mein Lehrer folgendes an die Tafel
> geschrieben:
>  f(0)=0
>  g(0)=2
> Frage: wofür?

keine Ahnung


>  
> Und dann die Stammfunktion.
>                 |1
>  -1/2x²+2x-1/3x³|
>                 |-2
>  
> Wie rechne ich dann den Rest aus?

Definition: [mm] [h(x)]_a^b:=h(b)-h(a) [/mm]

FRED

>  
> Danke im voraus.
>  Ich hoffe Ihr könnt mir helfen.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
        
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 12.12.2011
Autor: cdromabi

Ich weiß nicht wie man mit dem Editor umgeht, entschuldigung.

Wie kommt mein Lehrer drauf g(2) auszurechnen?
Was ist mit f(0) ?
Ich weiß leider nicht wie es weiter gehen soll.
Er hat dann -1/2 +2 -1/3 -(2-4+8/3) berechnet.

Bezug
                
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 12.12.2011
Autor: Teufel

Hi!

Er hat sicher f(0) und g(0) berechnet, um zu sehen, welche Funktion in dem Intervall über der anderen liegt. In dem Fall ist g eben über f. Daher rechnet er auch g(x)-f(x). Du kannst auch f(x)-g(x) rechnen, dann dreht sich nur das Vorzeichen des Ergebnisses um, wie schon gesagt wurde.

Bezug
                        
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:06 Mo 12.12.2011
Autor: cdromabi

Schön und gut. Kann mir jemand das schritt für schritt erklären wie man das weiter berechnet bitte?

Bezug
                                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 Mo 12.12.2011
Autor: Teufel

Ausrechnen musst du noch einen Ausdruck der Form [mm] [h(x)]_a^b. [/mm] Den rechnest du mit h(b)-h(a) aus, d.h. du setzt die obere Grenze ein und ziehst davon das ab, wenn du die untere Grenze einsetzt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]