matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFlächeninhalt eines Dreiecks
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Flächeninhalt eines Dreiecks
Flächeninhalt eines Dreiecks < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt eines Dreiecks: bin ich zu blöd?
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 12.07.2005
Autor: Bastiane

Hallo!
Ich komme hier bei einer Aufgabe auf folgende Sache:
Es soll der Flächeninhalt eines solchen Dreiecks (allgemein) ausgerechnet werden:
[Dateianhang nicht öffentlich]

Als Lösung habe ich dann da stehen:

[mm] \bruch{1}{2}|x(t)y(t+\Delta t)-x(t+\Delta [/mm] t)y(t)|,

aber ich habe keine Ahnung, wie man darauf kommt. Normalerweise berechne ich doch den Flächeninhalt als [mm] \bruch{1}{2}*Grundfläche*Höhe [/mm] - aber hier sieht mir das irgendwie anders aus. Weiß jemand, was hier gemacht wurde?

Viele Grüße
Bastiane
[banane]


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Flächeninhalt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Di 12.07.2005
Autor: Paulus

Liebe Christiane

wenn du eine elementargeometrische Deutung willst, dann kannst du dir das etwa so überlegen:

Bezeichne zunächst bitte die Ecken des Dreiecks mit A, B und C, im Gegenuhrzeigersinn, der Koordinatenursprung ist dann die Ecke A.

Die Projektion des Punktes B auf die x-Achse sei der Punkt B'.
Die Projektion des Punktes C auf die x-Achse sei der Punkt C'.

Nun ist doch das gesuchte Dreieck gerade die Fläche des Dreiecks ACC' minus der Fläche des Dreiecks AB'B minus der Fläche des Trapezes B'C'CB.

Somit:

[mm] $\bruch{1}{2}*x(t+\Delta t)*y(t+\Delta t)-\bruch{1}{2}*x(t)*y(t)-\bruch{1}{2}*\left(y(t+\Delta t)+y(t)\right)*\left(x(t+\Delta t)-x(t)\right)$ [/mm]

Das brauchst du nur auszumultiplizieren, und es werden sich diese zwei Terme aufheben:

[mm] $\bruch{1}{2}*y(t+\Delta [/mm] t) [mm] *(x(t+\Delta t)-x(t))-\bruch{1}{2}*y(t+\Delta t)*(x(t+\Delta [/mm] t)-x(t)) $

Ich hoffe, damit ist die Frage befriedigend beantwortet. :-)

Mit ganz lieben Grüssen

Paul


Bezug
                
Bezug
Flächeninhalt eines Dreiecks: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Di 12.07.2005
Autor: Bastiane

Lieber Paul!
> Ich hoffe, damit ist die Frage befriedigend beantwortet.
> :-)

Ja, vielen vielen Dank. Ich komme zwar irgendwie nicht so ganz auf mein Ergebnis, aber da bin ich wohl nur zu blöd zum Rechnen... Das Prinzip hab ich jedenfalls verstanden - ist ja eigentlich nicht schwierig, man muss nur drauf kommen. ;-)

Viele liebe Grüße
Christiane
[winken]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]