matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieFlächeninhalt unter Kurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Flächeninhalt unter Kurve
Flächeninhalt unter Kurve < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt unter Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Fr 27.07.2012
Autor: Blaubart

Aufgabe
Sei C die durch [mm] \vec{c}(t)= \vektor{e^{t}*cos(\pi*t) \\ e^{t}*sin(\pi*t)}, [/mm] 0 [mm] \le t\le [/mm] 1 definiterte Kurve,

berechnen Sie den Inhalt der von x-Achse und Kurve eingeschlossenen Fläche.

Hi,
mein Ansatz ist eigentlich einfach das Flächenintegral [mm] \integral_{F}^{}{dS} [/mm] zu berechnen. Wobei meine Parameterisierung der Fläche [mm] \vec{f}(r,\phi)= \vektor{r*cos(\phi) \\ r*sin(\phi) \\ 0}, [/mm] 1 [mm] \le r\le [/mm] e, 0 [mm] \le \phi\le \pi [/mm] ist.
Ich hab dann nachdem ich das Kreuzprodukt usw. berechnet habe da [mm] \integral_{0}^{\pi}\integral_{1}^{e}{r dr d\phi} [/mm] stehen und komme somit auch einen Flächeninhalt von [mm] \bruch{\pi}{2}*(e^2 [/mm] -1).
Ist das richtig so?


        
Bezug
Flächeninhalt unter Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Fr 27.07.2012
Autor: Event_Horizon

Hallo!


> Wobei meine
> Parameterisierung der Fläche [mm]\vec{f}(r,\phi)= \vektor{r*cos(\phi) \\ r*sin(\phi) \\ 0},[/mm]
> 1 [mm]\le r\le[/mm] e, 0 [mm]\le \phi\le \pi[/mm] ist.

Das ist nicht richtig. Deine Fläche beschreibt die obere Hälfte eines Kreisrings, der durch zwei konzentrische kreise mit den Radien 1 und e gebildet wird.

Die gesuchte Fläche ist aber die hier:

[Dateianhang nicht öffentlich]

Die Integrationsgrenze [mm] $\le \phi\le \pi$ [/mm] ist OK, aber überlege dir, von wo bis wo r verläuft - und zwar abhängig von [mm] \phi [/mm] !


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhalt unter Kurve: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:03 Sa 28.07.2012
Autor: Blaubart

Hi,
stimmen die Grenzen denn so:
[mm] \integral_{0}^{\pi}\integral_{e^{\phi/2}}^{1}{r dr d\phi} [/mm] ?
Nur leider kommt da ein negatives Ergebnis raus...
Gruß

Bezug
                        
Bezug
Flächeninhalt unter Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 28.07.2012
Autor: Event_Horizon

Hallo!

Leider nein.
Denk dran: Das hier sind polarkoordinaten, der Vektor [mm] \vec{e}_r [/mm] zeigt vom Ursprung weg.

Zeichne doch mal Linien vom Ursprung weg, die mit der positiven x-Achse einen Winkel von 0, [mm] \pi/2 [/mm] oder [mm] \pi [/mm] bilden. Von wo (untere Integrationsgrenze von r) bis wo (obere Grenze) liegen die Linien denn auf der roten Fläche? Und kannst du das dann auch für jeden beliebigen Winkel [mm] \phi [/mm]  angeben?


Bezug
                                
Bezug
Flächeninhalt unter Kurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 29.07.2012
Autor: Blaubart

Ok ich glaube jetzt habe ich es. Dann müsste es aber so richitg sein:
[mm] \integral_{0}^{\phi}\integral_{0}^{e^\bruch{\phi}{\pi}}{r dr d\phi} [/mm] oder?
Komme damite dann auch ca 5 FE was ja eigentlich sehr gut passt.

Gruß

Bezug
                                        
Bezug
Flächeninhalt unter Kurve: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 So 29.07.2012
Autor: MathePower

Hallo Blaubart,


> Ok ich glaube jetzt habe ich es. Dann müsste es aber so
> richitg sein:
> [mm]\integral_{0}^{\phi}\integral_{0}^{e^\bruch{\phi}{\pi}}{r dr d\phi}[/mm]


Das muss doch hier so lauten:

[mm]\integral_{0}^{\blue{\pi}}\integral_{0}^{e^\bruch{\phi}{\pi}}{r dr d\phi}[/mm]


> oder?
>  Komme damite dann auch ca 5 FE was ja eigentlich sehr gut
> passt.

>


Das passt auch. [ok]

  

> Gruß


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]