matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFlächeninhalte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Flächeninhalte
Flächeninhalte < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 25.07.2011
Autor: NobyC

Aufgabe
1. f(x) = -0.5x²+2 [0;4]

2. f(x) = -x²-4


Ich habe ein Problem, ich verstehe nicht so ganz die Ausdrücke: (1.) "Inhalt zwischen dem Funktionsgraphen von f und der X-Achse" und (2.) "Inhalt der Fläche die der Graph von f mit der X-Achse einschließt"

1. und 2. sind die Aufgaben.

Danke vielmals!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Flächeninhalte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Mo 25.07.2011
Autor: ONeill

Hallo NobyC!

Der Inhalt zwischen der x-Achse und deiner Funktion ermittelst Du mittels dem Integral.

Die Fläche zwischen zwei Funktionen errechnest du dadurch, dass du das Integral der einen Funktion berechnest und von dem der anderen Funktion abziehst.

In Zukunft wäre es schön, wenn du eine vollständige Aufgabe mit entsprechendem Text posten könntest.

Beste Grüße
Christian

Bezug
                
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Mo 25.07.2011
Autor: NobyC

Ich will eigentlich wissen wie man 1. und 2. berechnen soll. Sie sind die Aufgaben, bei denen ich schwierigkeiten habe. Mein Taschenrechner kann sie Lösen, aber ich verstehe nicht wie ich das Resultat ermitteln soll. Besser gesagt, wie ich in den beiden Fällen vorgehen muss um das korrekte Resultat zu bekommen.

Die Aufgaben mache ich um einfach meine Kenntnisse zu behalten.

Bezug
        
Bezug
Flächeninhalte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Mo 25.07.2011
Autor: M.Rex

Hallo

Bei f(x) = -0.5x²+2 berechnest du, da das Intervall I=[0;4]vorgegeben ist:

[mm] \int_{0}^{4}-0,5x^{2}+2dx [/mm]

Bei -x²-4 müssest du noch die Integrationsgrenzen bestimmen, das sind hier die Schnittstellen mit der x-Achse, also die Nullstellen.
Aber [mm] -x^{2}-4=0 [/mm] hat keine Nullstellen (Parabel mit Scheitel S(0;-4), nach unten geöffnet), also schliesst dieser Graph mit der x-Achse kein Fläche ein.
Meinst du vielleicht [mm] g(x)=-x^{2}\red{+}4 [/mm]
g hätte die Nullstellen 2 und -2, also würdest du die Fläche wie folgt berechnen:
[mm] \int_{-2}^{2}-x^{2}+4dx [/mm]

Marius


Bezug
                
Bezug
Flächeninhalte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:25 Mo 25.07.2011
Autor: NobyC

Das wollte ich wissen, vielen vielen dank! :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]