matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationFlächenintegration im Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Flächenintegration im Raum
Flächenintegration im Raum < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenintegration im Raum: Idee
Status: (Frage) beantwortet Status 
Datum: 22:38 Di 27.03.2012
Autor: king_loki

Aufgabe
Ein gerader Kreiskegel mit Grundkreisradius r=30 cm und Höhe h=40 cm wird von einer Ebene geschnitten, die parallel zu einer Mantellinie des Kegels verläuft und den Grundkreismittelpunkt enthält. Berechnen Sie den Flächeninhalt der durch die Ebene herausgeschnittenen Fläche.

Kann mir Jemand einen Denkanstoss geben? Mir ist im Moment völlig schleierhaft, wie ich die Aufgabe angehen soll. Habe mir eine Skizze angefertigt, komme aber nicht weiter.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächenintegration im Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mi 28.03.2012
Autor: Al-Chwarizmi


> Ein gerader Kreiskegel mit Grundkreisradius r=30 cm und
> Höhe h=40 cm wird von einer Ebene geschnitten, die
> parallel zu einer Mantellinie des Kegels verläuft und den
> Grundkreismittelpunkt enthält. Berechnen Sie den
> Flächeninhalt der durch die Ebene herausgeschnittenen
> Fläche.
>  Kann mir Jemand einen Denkanstoss geben? Mir ist im Moment
> völlig schleierhaft, wie ich die Aufgabe angehen soll.
> Habe mir eine Skizze angefertigt, komme aber nicht weiter.


Hallo king-loki,

                  [willkommenmr]

Dieser Schnitt ergibt ein Parabelsegment, und dessen
Flächeninhalt berechnet man am einfachsten mit einer
Formel, die auf meinen verehrten Kollegen Archimedes
von Syrakus zurückgeht. Diese Formel kannst du entweder
selber durch ein Integral selber herleiten oder aber im
Netz finden ...

LG   Al-Chwarizmi

Bezug
                
Bezug
Flächenintegration im Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:45 Mi 28.03.2012
Autor: king_loki

Vielen Daqnk für die schnelle Antwort!
Werde mal ein bisschen recherchieren!
Lg Loki

Bezug
                        
Bezug
Flächenintegration im Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:27 Fr 30.03.2012
Autor: Al-Chwarizmi


> Vielen Dank für die schnelle Antwort!
>  Werde mal ein bisschen recherchieren!
>  Lg Loki


Hallo Loki,

ich hoffe, dass du die Formel inzwischen
gefunden hast. Falls doch nicht:
Wenn dem Parabelsegment zwischen der Parabel p und
der Sehne AB ein Parallelogramm ABCD umbeschrieben
ist, so entspricht der Flächeninhalt des Segments
zwischen der Sehne AB und dem Parabelbogen zwei
Dritteln des Inhalts des Parallelogramms ABCD.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]