matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikFließgeschwindigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Fließgeschwindigkeit
Fließgeschwindigkeit < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fließgeschwindigkeit: Problem
Status: (Frage) beantwortet Status 
Datum: 16:49 Mo 21.05.2007
Autor: ZooYork

Hallo zusammen!

Ja also ich habe folgendes Problem. Ich würde gerne die Fließgeschwindigkeit von Wasser am Ende eines Rohres herausfinden, am besten in l/s. Bloss weiß ich nicht, ob es dafür eine konkrete Formel gibt. Was ich weiß ist der Durchmesser von 125 mm, die Länge von 5 m und das Gefälle von 4 %. Sind dabei noch weitere Werte wichtig wie Druck und Reibung? Am besten wäre eine Formel in die man dies nur alles einsetzen brauch, Kann mir jemand weiterhelfen?

Mfg Basti

        
Bezug
Fließgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Mo 21.05.2007
Autor: Event_Horizon

Kurz gegoogelt, und ich stoße auf Hagen-Poiseuille:

[mm] I=\frac{\pi r^4 \Delta p}{8\eta l} [/mm]

Neben dem Druckunterschied [mm] $\Delta [/mm] p$ geht Raduis und Länge und natürlich die Viskosität [mm] \eta [/mm] in die Gleichung ein.

Ich meine, für Wasser gilt [mm] \eta=1 [/mm] im SI-Einheitensystem

Bezug
                
Bezug
Fließgeschwindigkeit: Vereinfachung?
Status: (Frage) beantwortet Status 
Datum: 20:24 Mo 21.05.2007
Autor: ZooYork

Hey!

Erstmal danke für deine Antwort! Die Gleichung ist schon mal ziemlich gut. Nun gibt es nur noch das Problem mit [mm] \Delta [/mm] p . Könnte man dies nicht durch andere gegebene Werte berechnen? Ich habe mir da folgendes überlegt:
Man könnte die Druckdifferenz doch ausdrücken durch eine Kraft auf die untere Querschnittsfläche des Rohrs. In dem Falle müsste das doch [mm] \Delta p=\bruch{F_{H}}{A} [/mm] sein. Weiterhin ergebe sich doch dann: [mm] \Delta p=\bruch{F_{H}}{A}=\bruch{F_{G} \* sin \alpha }{A}=\bruch{m \* g \* sin \alpha }{A}=\bruch{\mathcal{P} \* l \* A \* g \* sin \alpha }{A}=\mathcal{P}\* l\* g\* sin\alpha (\mathcal{P} [/mm] ist mal hier die Dichte^^). Ja und für [mm] \alpha [/mm] gilt: [mm] tan\alpha=\bruch{4}{100} [/mm]
Kann man das so machen?? Bitte um Hilfe!

Mfg Basti

Bezug
                        
Bezug
Fließgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 21.05.2007
Autor: Event_Horizon

Hallo!

Leider weiß ich nicht genau, was du mit deinen ganzen F's meinst, aber: Eine Zerlegung in unterschiedliche Komponenten ist beim Druck doch nicht notwendig! In Flüssigkeiten breitet sich der Druck in alle Richtungen gleich aus.

Die Höhendifferenz ist das einzige, was du brauchst: [mm] $\Delta p=\rho*h*g$. [/mm]

Bezug
                                
Bezug
Fließgeschwindigkeit: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 Mo 21.05.2007
Autor: ZooYork

Also danke für deine Hilfe. Hab die Formel mit dem Schweredruck mit meiner Lösung verglichen und es kommt aufs gleiche hinaus. Jetzt gehts ans rechnen!

Mfg Basti

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]