matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesFluss eines Vektorfeldes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Fluss eines Vektorfeldes
Fluss eines Vektorfeldes < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fluss eines Vektorfeldes: Tipp zu den Integrationsgrenze
Status: (Frage) beantwortet Status 
Datum: 11:30 So 03.12.2017
Autor: schokoschnecke

Aufgabe
Berechnen Sie den Fluß des Vektorfeldes [mm] \(F(x,y,z) [/mm] = [mm] \left( \begin{array}{c}x^3\\x^4y^4\\z\end{array} \right) \) [/mm] durch die Paraboloidfläche [mm] \(z [/mm] = [mm] x^2 [/mm] + [mm] y^2, [/mm] 0 [mm] \leq [/mm] x [mm] \leq [/mm] 2, 0 [mm] \leq [/mm] y [mm] \leq 3\) [/mm] .

Hallo,
ich soll die oben genannte Aufgabe lösen. Ich versteh leider nicht, zwischen welchen Grenzen ich am Ende integrieren soll. Meine Rechnung soweit:

Laut Vorlesung gilt [mm] $\int\int_S F(x,y,z)\cdot \nu d\sigma\ [/mm] = [mm] \int\int_S [/mm] F(x,y,z) [mm] \cdot \nu \cdot \sqrt{EG-F^2} \text{d}(s,t)$. [/mm] Ich habe Zylinderkoordinaten verwendet. Die Parmetrisierung und die Tangentenvektoren sehen dann so aus:
[mm] \(\gamma [/mm] = [mm] \left( \begin{array}{c}s\cdot \cos t\\s\cdot \sin t\\s^2\end{array} \right)\) [/mm]
[mm] \(\gamma_s [/mm] = [mm] \left( \begin{array}{c}\cos t\\\sin t\\2s\end{array} \right)\) [/mm]
[mm] \(\gamma_t [/mm] = [mm] \left( \begin{array}{c} -s\cdot \sin t\\s\cdot \cos t\\0\end{array} \right)\) [/mm]
Für den Normalenvektor habe ich dann das folgende raus:
[mm] \(\gamma_s \times \gamma_t [/mm] = [mm] \left( \begin{array}{c}-2s^2\cdot \cos t\\-2s^2\cdot\sin t\\s\end{array} \right)\) [/mm]
[mm] \(\vert\vert\gamma_s \times \gamma_t \vert\vert=\ s\cdot\sqrt{1+4s^2}\) [/mm]
[mm] \(\nu [/mm] = [mm] \frac{1}{\sqrt{1 + 4s^2}} \cdot \left( \begin{array}{c}-2\cos t\\-2s\sin t\\0\end{array} \right)\) [/mm]
Dann fehlt noch der Term [mm] \(\sqrt{EG-F^2}\): [/mm]
[mm] \(E [/mm] = [mm] \vert\vert\gamma_s\vert\vert^2, [/mm] G = [mm] \vert\vert\gamma_t\vert\vert^2, [/mm] F = [mm] \gamma_s\cdot \gamma_t \) [/mm]
Für die Wurzel bekomme ich dann [mm] \(s \sqrt{1+4s^2}\). [/mm]

Für das gesamte Integral hab ich dann:
[mm] \(\int\int_S \left( \begin{array}{c}s^3\cdot \cos^3 t\\s^4\cdot \sin^4 t\cdot s^4\cdot \cos^4 t\\s^2\end{array} \right) \cdot \left( \begin{array}{c}-2s\cdot \cos t\\-2s\cdot \sin t\\0\end{array} \right) \text{d}(s,t)\) [/mm]

Bei t vermute ich mal, dass ich von 0 bis [mm] 2\(\Pi\) [/mm] integriere. Bei s verstehe ich es aber nicht. Das [mm] \(0 \leq [/mm] x [mm] \leq [/mm] 2, 0 [mm] \leq [/mm] y [mm] \leq 3\) [/mm] verwirrt mich total. Kann mir da einer helfen?

        
Bezug
Fluss eines Vektorfeldes: "normales" Koordinatensystem !
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:44 So 03.12.2017
Autor: Al-Chwarizmi


> Berechnen Sie den Fluß des Vektorfeldes [mm]\(F(x,y,z)[/mm] =
> [mm]\left( \begin{array}{c}x^3\\x^4y^4\\z\end{array} \right) \)[/mm]
> durch die Paraboloidfläche [mm]\(z[/mm] = [mm]x^2[/mm] + [mm]y^2,[/mm] 0 [mm]\leq[/mm] x [mm]\leq[/mm]
> 2, 0 [mm]\leq[/mm] y [mm]\leq 3\)[/mm] .
>  Hallo,
>  ich soll die oben genannte Aufgabe lösen. Ich versteh
> leider nicht, zwischen welchen Grenzen ich am Ende
> integrieren soll. Meine Rechnung soweit:
>
> Laut Vorlesung gilt [mm]\int\int_S F(x,y,z)\cdot \nu d\sigma\ = \int\int_S F(x,y,z) \cdot \nu \cdot \sqrt{EG-F^2} \text{d}(s,t)[/mm].
> Ich habe Zylinderkoordinaten verwendet. Die Parmetrisierung
> und die Tangentenvektoren sehen dann so aus:
>  [mm]\(\gamma[/mm] = [mm]\left( \begin{array}{c}s\cdot \cos t\\s\cdot \sin t\\s^2\end{array} \right)\)[/mm]
> [mm]\(\gamma_s[/mm] = [mm]\left( \begin{array}{c}\cos t\\\sin t\\2s\end{array} \right)\)[/mm]
>  
> [mm]\(\gamma_t[/mm] = [mm]\left( \begin{array}{c} -s\cdot \sin t\\s\cdot \cos t\\0\end{array} \right)\)[/mm]
>  
> Für den Normalenvektor habe ich dann das folgende raus:
> [mm]\(\gamma_s \times \gamma_t[/mm] = [mm]\left( \begin{array}{c}-2s^2\cdot \cos t\\-2s^2\cdot\sin t\\s\end{array} \right)\)[/mm]
>  
> [mm]\(\vert\vert\gamma_s \times \gamma_t \vert\vert=\ s\cdot\sqrt{1+4s^2}\)[/mm]
>  
> [mm]\(\nu[/mm] = [mm]\frac{1}{\sqrt{1 + 4s^2}} \cdot \left( \begin{array}{c}-2\cos t\\-2s\sin t\\0\end{array} \right)\)[/mm]
>  
> Dann fehlt noch der Term [mm]\(\sqrt{EG-F^2}\):[/mm]
>  [mm]\(E[/mm] = [mm]\vert\vert\gamma_s\vert\vert^2,[/mm] G =
> [mm]\vert\vert\gamma_t\vert\vert^2,[/mm] F = [mm]\gamma_s\cdot \gamma_t \)[/mm]
>  
> Für die Wurzel bekomme ich dann [mm]\(s \sqrt{1+4s^2}\).[/mm]
>  
> Für das gesamte Integral hab ich dann:
>  [mm]\(\int\int_S \left( \begin{array}{c}s^3\cdot \cos^3 t\\s^4\cdot \sin^4 t\cdot s^4\cdot \cos^4 t\\s^2\end{array} \right) \cdot \left( \begin{array}{c}-2s\cdot \cos t\\-2s\cdot \sin t\\0\end{array} \right) \text{d}(s,t)\)[/mm]
>  
> Bei t vermute ich mal, dass ich von 0 bis [mm]2\(\Pi\)[/mm]
> integriere. Bei s verstehe ich es aber nicht. Das [mm]\(0 \leq[/mm]
> x [mm]\leq[/mm] 2, 0 [mm]\leq[/mm] y [mm]\leq 3\)[/mm] verwirrt mich total. Kann mir
> da einer helfen?


Hallo schokoschnecke,

ich befürchte einfach, dass die Idee mit den Zylinderkoordinaten
in diesem Fall nicht wirklich hilfreich ist, da zwar die Fläche, über
welche integriert werden soll, zylindersymmetrisch ist, aber das
Integrationsgebiet überhaupt nicht.
Eine Darstellung der Berandung in Zylinderkoordinaten wäre zwar
möglich, aber der Gesamtaufwand für die Lösung der Aufgabe
würde damit eher größer.
Versuche die Aufgabe also einfach mit den "gewöhnlichen" recht-
winkligen Koordinaten zu bearbeiten !


LG ,   Al-Chwarizmi

Bezug
        
Bezug
Fluss eines Vektorfeldes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 So 03.12.2017
Autor: leduart

Hallo
Forenregeln: gib an, wenn du auch in anderen Foren dieselbe Frage sollst!
Gruß leduart

Bezug
                
Bezug
Fluss eines Vektorfeldes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 So 03.12.2017
Autor: Diophant

Hallo leduart,

auch obige Antwort wäre besser eine Mitteilung gewesen. Ich weiß um die Problematik der Cross-Postings und die dahingehende Forenregel. Immerhin gibt es jedoch (wie hier offenbar geschehen*) auch User, die sich daran nicht stören, dass die Frage bereits in einem anderen Forum gestellt wurde.

Die Gefahr ist also auch hier, dass man eine offene Frage als solche unkenntlich macht.

Gruß, Diophant

*Auch mich stört so etwas prinzipiell nicht und ich möchte gerne anregen, die entsprechende Forenregel zu streichen.

Bezug
                        
Bezug
Fluss eines Vektorfeldes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 So 03.12.2017
Autor: Al-Chwarizmi


> Hallo leduart,
>  
> auch obige Antwort wäre besser eine Mitteilung gewesen.


Hallo Diophant

Habe wenigstens ich hier in diesem Thread meine beiden
Beiträge einmal (nach deiner Einschätzung) richtig etikettiert
(eine Mitteilung betr. Koordinatensystem, nachher eine
Antwort, in der ich die eigentliche Frage betr. die -
nach meiner Einschätzung allerdings ungeeignete -
Parametrisierung eines Rechtecksgebietes durch Polar-
koordinaten beantworte ?

LG ,   Al-Chw.  

Bezug
        
Bezug
Fluss eines Vektorfeldes: Integrationsgrenzen (polar)
Status: (Antwort) fertig Status 
Datum: 16:59 So 03.12.2017
Autor: Al-Chwarizmi

Hallo nochmal,

falls du das Integrationsgebiet, also das Rechteck
mit 0≤x≤2  und  0≤y≤3  tatsächlich mittels Polar-
koordinaten  (Radius s, Winkel t)  beschreiben willst,
geht das schon. Ich habe es mir mal kurz überlegt.
Das sähe dann so aus:

erstes Teil-Integral (für  0 ≤ t ≤ [mm] arctan(\frac{3}{2}) [/mm] )
mit     0 ≤ s ≤ [mm] \frac{2}{cos(t)} [/mm]

zweites Teil-Integral (für  [mm] arctan(\frac{3}{2}) [/mm] ≤ t ≤ [mm] \frac{\pi}{2} [/mm] )
mit     0 ≤ s ≤ [mm] \frac{3}{sin(t)} [/mm]

Ich stelle mir nur vor (wie vorher schon mitgeteilt),
dass die ganze Rechnerei dann ziemlich mühsam
(und damit auch fehleranfällig) werden könnte.

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]