Flussintegral berechnen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:30 Mo 04.04.2011 | Autor: | jaood |
Aufgabe | Es soll das Flussintegral [mm] $\iint\limits_S \vec{v} \cdot d\vec{O}$ [/mm] des Vektorfeldes
[mm] \begin{displaymath}
\vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix}
\end{displaymath}
[/mm]
durch die Fläche $S$, welche durch die Parametrisierung
[mm] \begin{displaymath}
\vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1
\end{displaymath}
[/mm]
gegeben ist, berechnet werden. |
Hallo Leute,
habe Probleme mit der oben stehenden Aufgabe. Mein Problem bezieht sich auf die unterschiedlichen variablen. Wenn ich das Oberflächenelement bereche, dann erhalte ich für das Integral:
[mm] \iint\limits_S \vec{v} \cdot d\vec{O} [/mm] = [mm] \int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix} [/mm] dudv
Die Integrationsvariablen sind ja u und v. Ich möchte also wahrscheinlich [mm] z^4 [/mm] und [mm] x^2y^2 [/mm] durch u und v darstellen. Wie kann ich das machen, bzw was ist hier das richtige Vorgehen?
Vielen Dank im voraus!
|
|
|
|
> Es soll das Flussintegral [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm]
> des Vektorfeldes
> [mm]\begin{displaymath}
\vec{v}(x,y,z)= \begin{pmatrix} 1+z^4 \\ 1+z^4 \\ 1+x^2y^2 \end{pmatrix}
\end{displaymath}[/mm]
>
> durch die Fläche [mm]S[/mm], welche durch die Parametrisierung
> [mm]\begin{displaymath}
\vec{x}(u,v)=\begin{pmatrix} u \\ v \\ \frac{1}{4}\cdot u \cdot v \end{pmatrix} \quad \text{ mit } |u| \leq 1, |v|\leq 1
\end{displaymath}[/mm]
>
> gegeben ist, berechnet werden.
> Hallo Leute,
>
> habe Probleme mit der oben stehenden Aufgabe. Mein Problem
> bezieht sich auf die unterschiedlichen variablen. Wenn ich
> das Oberflächenelement bereche, dann erhalte ich für das
> Integral:
> [mm]\iint\limits_S \vec{v} \cdot d\vec{O}[/mm] =
> [mm]\int_{-1}^{1}\int_{-1}^{1} \begin{pmatrix} 1+z^4 \\ 1+z^4 \\1 +x^2y^2 \end{pmatrix} \times \begin{pmatrix} - \frac{1}{4}v \\ - \frac{1}{4}u \\ 1 \end{pmatrix}\ du\ dv[/mm]
>
> Die Integrationsvariablen sind ja u und v. Ich möchte also
> wahrscheinlich [mm]z^4[/mm] und [mm]x^2y^2[/mm] durch u und v darstellen. Wie
> kann ich das machen, bzw was ist hier das richtige
> Vorgehen?
>
> Vielen Dank im voraus!
Hallo jaood,
bei der vorliegenden Aufgabe ist es natürlich so, dass
für die Punkte der Fläche S
x(u,v)=u und y(u,y)=v ist, sowie [mm] z(u,v)=\frac{1}{4}*u*v
[/mm]
Der Übersichtlichkeit halber ist es aber wohl trotzdem
eine ganz gute Idee, für die Integration alles mittels
der Variablen u und v zu schreiben.
Wie du vom Integranden mit dem Skalarprodukt [mm] \vec{v} \cdot d\vec{O}
[/mm]
zu einem mit einem Vektorprodukt kommst, ist mir
rätselhaft (obwohl ein Vektorprodukt zur Berech-
nung des Normalenvektors mit im Spiel war)
LG Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:03 Mo 04.04.2011 | Autor: | jaood |
Vielen Dank für die schnelle Antwort. Habe das Prinzip nun verstanden.
Das Kreuzprodukt hat dort natürlich nichts verloren, es handelt sich um ein Flüchtigkeitsfehler.
|
|
|
|