matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisFolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Folge
Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Di 08.11.2005
Autor: denwag

hi, hab da eine aufgabe und weiß nicht sorecht wie ich es zeigen soll.
also fogende aufgabe:

Untersuchen Sie die nachstehenden Folgen (an) auf Konvergenz und bestimmen Sie ggfs. den Grenzwert:

[mm] a_{n} [/mm] := ( [mm] 7^{n} [/mm] - [mm] 5^{n} [/mm] + [mm] 2^{n} [/mm] ) / ( 3 * [mm] 7^{n} [/mm] - [mm] 2^{n} [/mm] + 7 )

Ich hab folgendes:

Ich hab jetzt für n = 10 und n = 100 eingesetzt und damit sehe ich das die folge a(n) gegen 1/3 konvergiert.

wie kann ich das besser beweisen????
vieleicht mit der formel :  | a(n) - a  | =  [mm] \varepsilon [/mm]

ich komm da jedenfalls nicht weiter.

ansonsten reicht es wenn ich für den Grenzwert, dann folgendes schreibe:

[mm] \limes_{n\rightarrow\infty} [/mm] ( [mm] 7^{n} [/mm] - [mm] 5^{n} [/mm] + [mm] 2^{n} [/mm] ) / ( 3 * [mm] 7^{n} [/mm] - [mm] 2^{n} [/mm] + 7 ) = 1/3

reicht das um zu zeigen das der grenzwert 1/3 ist?

danke für jede hilfe.

        
Bezug
Folge: Ausklammern hilft
Status: (Antwort) fertig Status 
Datum: 19:12 Di 08.11.2005
Autor: Infinit

Hallo denwag,
Deine Aussage aus Deiner letzten Zeile ist zwar richtig, aber durch Umschreiben des Bruches lässt sich dies auch zeigen. Klammere $ [mm] 7^{n} [/mm] $ jeweils aus Zähler und Nenner aus und Du erhälst für Dein Folgeglied
$ [mm] \bruch {7^{n} \cdot (1-({\bruch{5}{7}})^{n} + ({\bruch{2}{7}})^{n})}{7^{n}\cdot (3-({\bruch{2}{7}})^{n} + 7^{1-n})} [/mm] $
Nun kannst Du ohne Probleme den Vorfaktor [mm] 7^{n} [/mm] in Zähler und Nenner rauskürzen und dann sieht man, dass für jeden der Summanden in Zähler und Nenner, der eine Potenz von n sind, der Wert gegen 0 läuft für  $ n [mm] \to \infty [/mm]  $. Das sollte eigentlich als Beweis genügen.
Viele Grüße,
Infinit

Bezug
                
Bezug
Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:06 Mi 09.11.2005
Autor: denwag

Danke vielmals!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]