matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteFolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Folge
Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Korrekturlesen
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 14.05.2007
Autor: KnockDown

Hi,

mal wieder soll ich sehen ob die Folge Konvergiert, wenn ja welchen Grenzwert sie besitzt:

[mm] $a_i=\bruch{i}{(i+1)^3}$ [/mm]

[mm] $\limes_{i\rightarrow\infty} \bruch{i}{i^3+9i^2+27i+27}$ [/mm]

[mm] $\limes_{i\rightarrow\infty} \bruch{i*\bruch{1}{i}}{i^3\bruch{1}{i}+9i^2\bruch{1}{i}+27i\bruch{1}{i}+27\bruch{1}{i}}$ [/mm]

[mm] $\limes_{i\rightarrow\infty} \bruch{1}{i^2+9i+27+27*\bruch{1}{i}}$ [/mm]

[mm] $=\bruch{1}{\red{\infty+\infty+27+0}}$ [/mm]

[mm] $=\bruch{1}{\red{\infty}}$ [/mm]

$=0$

Die Folge ist eine Nullfolge



Danke Grüße Thomas

        
Bezug
Folge: kürzer
Status: (Antwort) fertig Status 
Datum: 20:13 Mo 14.05.2007
Autor: Loddar

Hallo Thomas!


Dein Ergebnis ist richtig! Aber wie bereits in einem anderen Thread angedeutet, solltest Du jeweils die höchste Potenz ausklammern. Dann bist Du auch schneller am Ziel:

[mm] $\limes_{i\rightarrow\infty}a_i [/mm] \ = \ [mm] \limes_{i\rightarrow\infty}\bruch{i}{(i+1)^3} [/mm] \ = \ [mm] \limes_{i\rightarrow\infty}\bruch{i}{\left[i*\left(1+\bruch{1}{i}\right)\right]^3} [/mm] \ = \ [mm] \limes_{i\rightarrow\infty}\bruch{i^3*\bruch{1}{i^2}}{i^3*\left(1+\bruch{1}{i}\right)^3} [/mm] \ = \ [mm] \limes_{i\rightarrow\infty}\bruch{\bruch{1}{i^2}}{\left(1+\bruch{1}{i}\right)^3} [/mm] \ = \ [mm] \bruch{0}{\left(1+0\right)^3} [/mm] \ = \ [mm] \bruch{0}{1^3} [/mm] \ = \ [mm] \bruch{0}{1} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Folge: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Mo 14.05.2007
Autor: KnockDown


> Hallo Thomas!
>  
>
> Dein Ergebnis ist richtig! Aber wie bereits in einem
> anderen Thread angedeutet, solltest Du jeweils die höchste
> Potenz ausklammern. Dann bist Du auch schneller am Ziel:
>  
> [mm]\limes_{i\rightarrow\infty}a_i \ = \ \limes_{i\rightarrow\infty}\bruch{i}{(i+1)^3} \ = \ \limes_{i\rightarrow\infty}\bruch{i}{\left[i*\left(1+\bruch{1}{i}\right)\right]^3} \ = \ \limes_{i\rightarrow\infty}\bruch{i^3*\bruch{1}{i^2}}{i^3*\left(1+\bruch{1}{i}\right)^3} \ = \ \limes_{i\rightarrow\infty}\bruch{\bruch{1}{i^2}}{\left(1+\bruch{1}{i}\right)^3} \ = \ \bruch{0}{\left(1+0\right)^3} \ = \ \bruch{0}{1^3} \ = \ \bruch{0}{1} \ = \ 0[/mm]
>  
>
> Gruß
>  Loddar
>  


Hi Loddar,

danke für das Aufzeigen des kürzeren Weges und für das Korrekturlesen.


Grüße Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]