matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenFolge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Folge
Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Folge erkennen
Status: (Frage) beantwortet Status 
Datum: 16:06 So 08.06.2008
Autor: tinakru

Aufgabe
Zeigen oder widerlegen sie die Konvergenz der Folge

[mm] a_0 [/mm] = 0,5    [mm] a_1 [/mm] = 2i    und [mm] a_{n+1} [/mm] = [mm] a_n [/mm] * [mm] a_{n-1} [/mm]

Ich habe mal die ersten Folgenglieder berechnet:

= 0,5
= 2i
= i
= -2
= -2i
= 4i
= 8
= 32i
= 256i
= -8192

Eine komplexe Folge konvergiert, wenn der Realteil und der Imaginärteil jeweils gegen den selben liebes konvergieren:

Betrachte die Realteile:

n=0: 1/2
n=1: 0
n=2: 0
n=3: -2
n=4: 0
n=5: 0
n=6: 8
n=7: 0
n=8: 0
n=9: -8192

Erkenne ein System:

Die Realteile sind:

0  für n = 3n+1 oder n = 3n+1

und für n = 3n sind sie was anderes. Genau hier liegt mein Problem. Ich erkenne nicht wie ich das noch schreiben könnte:

n          0        3           6         9

Wert:   0,5      -2         8          -8192

Erkennt ihr da ein System. Wie kann man die Folge der Realteile ausdrücken???


Das gleiche Problem hab ich auch beid den Imaginärteilen:

Hier hab ich festgestellt:

Für 3n+1 und 3n+2 ergeben sich Werte und für 3n ergibt sich 0

Tabelle: für 3n+1

n         1        4       7

Wert    2        -2      32

Tabelle für 3n +2:

n        2       5       8

Werte 1      4        256

Ich kann da nichts erkennen.


        
Bezug
Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 So 08.06.2008
Autor: Somebody


> Zeigen oder widerlegen sie die Konvergenz der Folge
>  
> [mm]a_0[/mm] = 0,5    [mm]a_1[/mm] = 2i    und [mm]a_{n+1}[/mm] = [mm]a_n[/mm] * [mm]a_{n-1}[/mm]
>  Ich habe mal die ersten Folgenglieder berechnet:
>
> = 0,5
> = 2i
> = i
> = -2
> = -2i
> = 4i
> = 8
> = 32i
> = 256i
> = -8192
>
> Eine komplexe Folge konvergiert, wenn der Realteil und der
> Imaginärteil jeweils gegen den selben liebes konvergieren:

Stimmt, aber vielleicht ist es einfacher zu zeigen, dass der Betrag der [mm] $a_n$ [/mm] gegen [mm] $+\infty$ [/mm] geht. In diesem Falle hätte man Konvergenz widerlegt. Es ist ja [mm] $|a_{n+1}|=|a_n|\cdot |a_{n-1}|$. [/mm] So über den Daumen gepeilt scheinen die Beträge in der Tat immer grösser zu werden: betrachte also einmal nur die Folge der Beträge.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]